Advanced Imaging, Volume. 2, Issue 3, 031001(2025)

Edge accelerated reconstruction using sensitivity analysis for single-lens computational imaging Editors' Pick

Xuquan Wang1,2,3、†, Tianyang Feng1,2,3, Yujie Xing1,2,3, Ziyu Zhao1,2,3, Xiong Dun1,2,3、*, Zhanshan Wang1,2,3,4, and Xinbin Cheng1,2,3,4、*
Author Affiliations
  • 1MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, China
  • 2Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, China
  • 3Shanghai Frontiers Science Center of Digital Optics, Shanghai, China
  • 4Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
  • show less
    References(62)

    [1] A. Bhandari, A. Kadambi, R. Raskar. Computational Imaging(2022).

    [7] S.-H. Baek et al. Single-shot hyperspectral-depth imaging with learned diffractive optics, 2651(2021).

    [25] X. Shi et al. Memory-oriented structural pruning for efficient image restoration, 37, 2245(2023).

    [26] J. Oh et al. Attentive fine-grained structured sparsity for image restoration, 17673(2022).

    [27] B.-K. Kim, S. Choi, H. Park. Cut inner layers: a structured pruning strategy for efficient U-Net gans(2022).

    [31] Y. He et al. Filter pruning via geometric median for deep convolutional neural networks acceleration(2019).

    [32] Z. Dong et al. HAWQ: Hessian aware quantization of neural networks with mixed-precision(2019).

    [33] Z. Dong, H. Larochelle et al. HAWQ-V2: Hessian aware trace-weighted quantization of neural networks. Advances in Neural Information Processing Systems, 18518(2020).

    [37] J. Xiao et al. HALOC: hardware-aware automatic low-rank compression for compact neural networks, 37, 10464(2023).

    [38] A. Desai, A. Krause, K. Zhou, A. Shrivastava et al. Hardware-aware compression with random operation access specific tile (ROAST) hashing, 7732(2023).

    [43] Q. Sun et al. Learning rank-1 diffractive optics for single-shot high dynamic range imaging(2020).

    [44] C. A. Metzler et al. Deep optics for single-shot high-dynamic-range imaging(2020).

    [48] L. Lu et al. Evaluating fast algorithms for convolutional neural networks on fpgas, 101(2017).

    [49] S. Kala et al. UniWiG: unified winograd-GEMM architecture for accelerating CNN on fpgas, 209(2019).

    [52] S. Han, H. Mao, W. J. Dally. Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding(2016).

    [53] Y. Tang et al. Manifold regularized dynamic network pruning, 5018(2021).

    [54] H. Li et al. Pruning filters for efficient ConvNets(2017).

    [55] P. Molchanov et al. Importance estimation for neural network pruning(2019).

    [56] K. Chaudhuri, R. Zhao, R. Salakhutdinov et al. Improving neural network quantization without retraining using outlier channel splitting, 7543(2019).

    [57] M. Nagel et al. Data-free quantization through weight equalization and bias correction(2019).

    [58] S. K. Esser et al. “Learned step size quantization(2020).

    [59] R. Gong et al. Differentiable soft quantization: bridging full-precision and low-bit neural networks(2019).

    [60] Y. Cai, A. Oh et al. Binarized spectral compressive imaging, 38335(2023).

    [62] G. Fang et al. DepGraph: Towards any structural pruning, 16091(2023).

    Tools

    Get Citation

    Copy Citation Text

    Xuquan Wang, Tianyang Feng, Yujie Xing, Ziyu Zhao, Xiong Dun, Zhanshan Wang, Xinbin Cheng, "Edge accelerated reconstruction using sensitivity analysis for single-lens computational imaging," Adv. Imaging 2, 031001 (2025)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Article

    Received: Mar. 11, 2025

    Accepted: May. 9, 2025

    Published Online: Jun. 3, 2025

    The Author Email: Xiong Dun (dunx@tongji.edu.cn), Xinbin Cheng (chengxb@tongji.edu.cn)

    DOI:10.3788/AI.2025.10003

    Topics