Advanced Imaging, Volume. 2, Issue 3, 031001(2025)
Edge accelerated reconstruction using sensitivity analysis for single-lens computational imaging Editors' Pick
[1] A. Bhandari, A. Kadambi, R. Raskar. Computational Imaging(2022).
[7] S.-H. Baek et al. Single-shot hyperspectral-depth imaging with learned diffractive optics, 2651(2021).
[25] X. Shi et al. Memory-oriented structural pruning for efficient image restoration, 37, 2245(2023).
[26] J. Oh et al. Attentive fine-grained structured sparsity for image restoration, 17673(2022).
[27] B.-K. Kim, S. Choi, H. Park. Cut inner layers: a structured pruning strategy for efficient U-Net gans(2022).
[31] Y. He et al. Filter pruning via geometric median for deep convolutional neural networks acceleration(2019).
[32] Z. Dong et al. HAWQ: Hessian aware quantization of neural networks with mixed-precision(2019).
[33] Z. Dong, H. Larochelle et al. HAWQ-V2: Hessian aware trace-weighted quantization of neural networks. Advances in Neural Information Processing Systems, 18518(2020).
[37] J. Xiao et al. HALOC: hardware-aware automatic low-rank compression for compact neural networks, 37, 10464(2023).
[38] A. Desai, A. Krause, K. Zhou, A. Shrivastava et al. Hardware-aware compression with random operation access specific tile (ROAST) hashing, 7732(2023).
[43] Q. Sun et al. Learning rank-1 diffractive optics for single-shot high dynamic range imaging(2020).
[44] C. A. Metzler et al. Deep optics for single-shot high-dynamic-range imaging(2020).
[48] L. Lu et al. Evaluating fast algorithms for convolutional neural networks on fpgas, 101(2017).
[49] S. Kala et al. UniWiG: unified winograd-GEMM architecture for accelerating CNN on fpgas, 209(2019).
[52] S. Han, H. Mao, W. J. Dally. Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding(2016).
[53] Y. Tang et al. Manifold regularized dynamic network pruning, 5018(2021).
[54] H. Li et al. Pruning filters for efficient ConvNets(2017).
[55] P. Molchanov et al. Importance estimation for neural network pruning(2019).
[56] K. Chaudhuri, R. Zhao, R. Salakhutdinov et al. Improving neural network quantization without retraining using outlier channel splitting, 7543(2019).
[57] M. Nagel et al. Data-free quantization through weight equalization and bias correction(2019).
[58] S. K. Esser et al. “Learned step size quantization(2020).
[59] R. Gong et al. Differentiable soft quantization: bridging full-precision and low-bit neural networks(2019).
[60] Y. Cai, A. Oh et al. Binarized spectral compressive imaging, 38335(2023).
[62] G. Fang et al. DepGraph: Towards any structural pruning, 16091(2023).
Get Citation
Copy Citation Text
Xuquan Wang, Tianyang Feng, Yujie Xing, Ziyu Zhao, Xiong Dun, Zhanshan Wang, Xinbin Cheng, "Edge accelerated reconstruction using sensitivity analysis for single-lens computational imaging," Adv. Imaging 2, 031001 (2025)
Category: Research Article
Received: Mar. 11, 2025
Accepted: May. 9, 2025
Published Online: Jun. 3, 2025
The Author Email: Xiong Dun (dunx@tongji.edu.cn), Xinbin Cheng (chengxb@tongji.edu.cn)