Photonics Research, Volume. 10, Issue 2, A14(2022)

Wafer-level hermetically sealed silicon photonic MEMS

Gaehun Jo1, Pierre Edinger1, Simon J. Bleiker1, Xiaojing Wang1, Alain Yuji Takabayashi2, Hamed Sattari2, Niels Quack2, Moises Jezzini3, Jun Su Lee3, Peter Verheyen4, Iman Zand5, Umar Khan5, Wim Bogaerts5, Göran Stemme1, Kristinn B. Gylfason1,6、*, and Frank Niklaus1,7、*
Author Affiliations
  • 1Division of Micro and Nanosystems, KTH Royal Institute of Technology, 11428 Stockholm, Sweden
  • 2École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
  • 3Tyndall National Institute, Lee Maltings Complex Dyke Parade, T12 R5CP Cork, Ireland
  • 4imec vzw. 3DSIP Department, Si Photonics Group, Kapeldreef 75, 3001 Leuven, Belgium
  • 5Department of Information Technology, Photonics Research Group, Ghent University - IMEC, 9052 Gent, Belgium
  • 6e-mail: gylfason@kth.se
  • 7e-mail: frank@kth.se
  • show less
    References(37)

    [1] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 12, 1678-1687(2006).

    [2] A. Rahim, T. Spuesens, R. Baets, W. Bogaerts. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE, 106, 2313-2330(2018).

    [3] M. Pantouvaki, P. D. Heyn, M. Rakowski, P. Verheyen, B. Snyder, S. A. Srinivasan, H. Chen, J. D. Coster, G. Lepage, P. Absil, J. V. Campenhout. 50 Gb/s silicon photonics platform for short-reach optical interconnects. Optical Fiber Communication Conference, Th4H.4(2016).

    [4] A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, T. Liow. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron., 20, 405-416(2014).

    [5] K. Giewont, K. Nummy, F. A. Anderson, J. Ayala, T. Barwicz, Y. Bian, K. K. Dezfulian, D. M. Gill, T. Houghton, S. Hu, B. Peng, M. Rakowski, S. Rauch, J. C. Rosenberg, A. Sahin, I. Stobert, A. Stricker. 300-mm monolithic silicon photonics foundry technology. IEEE J. Sel. Top. Quantum Electron., 25, 8200611(2019).

    [6] F. Ottonello-Briano, C. Errando-Herranz, H. Rödjegård, H. Martin, H. Sohlström, K. B. Gylfason. Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide. Opt. Lett., 45, 109-112(2020).

    [7] Y. Gao, P. Dong, Y. Shi, Y. Shi. Suspended slotted photonic crystal cavities for high-sensitivity refractive index sensing. Opt. Express, 28, 12272-12278(2020).

    [8] K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets. Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Opt. Express, 15, 7610-7615(2007).

    [9] A. L. Washburn, R. C. Bailey. Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications. Analyst, 136, 227-236(2010).

    [10] L. Ren, X. Xu, S. Zhu, L. Shi, X. Zhang. Experimental realization of on-chip nonreciprocal transmission by using the mechanical Kerr effect. ACS Photon., 7, 2995-3002(2020).

    [11] L. K. Chin, Y. Shi, A.-Q. Liu. Optical forces in silicon nanophotonics and optomechanical systems: science and applications. Adv. Devices Instrum., 2020, 1964015(2020).

    [12] M. W. Pruessner, D. Park, T. H. Stievater, D. A. Kozak, W. S. Rabinovich. Optomechanical cavities for all-optical photothermal sensing. ACS Photon., 5, 3214-3221(2018).

    [13] W. Bogaerts, H. Sattari, P. Edinger, A. Y. Takabayashi, I. Zand, X. Wang, A. Ribeiro, M. Jezzini, C. Errando-Herranz, G. Talli, K. Saurav, M. G. Porcel, P. Verheyen, B. Abasahl, F. Niklaus, N. Quack, K. B. Gylfason, P. O’Brien, U. Khan. MORPHIC: programmable photonic circuits enabled by silicon photonic MEMS. Proc. SPIE, 11285, 1128503(2020).

    [14] S. Han, J. Beguelin, L. Ochikubo, J. Jacobs, T. J. Seok, K. Yu, N. Quack, C.-K. Kim, R. S. Muller, M. C. Wu. 32 × 32 silicon photonic MEMS switch with gap-adjustable directional couplers fabricated in commercial CMOS foundry. J. Opt. Microsyst., 1, 024003(2021).

    [15] T. Nagai, K. Hane. Silicon photonic microelectromechanical switch using lateral adiabatic waveguide couplers. Opt. Express, 26, 33906-33917(2018).

    [16] C. Errando-Herranz, A. Y. Takabayashi, P. Edinger, H. Sattari, K. B. Gylfason, N. Quack. MEMS for photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron, 26, 8200916(2020).

    [17] H. Sattari, A. Y. Takabayashi, P. Edinger, P. Verheyen, K. B. Gylfason, W. Bogaerts, N. Quack. Low-voltage silicon photonic MEMS switch with vertical actuation. IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), 298-301(2021).

    [18] P. Edinger, A. Y. Takabayashi, C. Errando-Herranz, U. Khan, H. Sattari, P. Verheyen, W. Bogaerts, N. Quack, K. B. Gylfason. Silicon photonic microelectromechanical phase shifters for scalable programmable photonics. Opt. Lett., 46, 5671-5674(2021).

    [19] D. Y. Kim, Y. J. Park, D. U. Kim, M. S. Hong, A. Y. Takabayashi, Y. Jeong, J. Park, S. Han, N. Quack, K. Yu, S. Han. 16-core recirculating programmable Si photonic MEMS. Conference on Lasers and Electro-Optics, STh1Q.6(2021).

    [20] K. Gilleo. Photonics challenge to electronic packaging. IEEE Trans. Compon. Packag. Technol., 24, 309-311(2001).

    [21] S. Chinmoy, Z. Daming, L. Sheng. Simulating optoelectronics/MEMS hermetic packaging process with finite element method. Fifth International Conference on Electronic Packaging Technology Proceedings (ICEPT), 502-511(2003).

    [22] H. Xia, M. N. Akram, E. Bardalen, A. Roy, K. E. Aasmundtveit, P. Ohlckers. Evaluation of silicon diaphragms for hermetic packaging of microbolometer arrays. IEEE 8th Electronics System-Integration Technology Conference (ESTC), 1-5(2020).

    [23] F. Forsberg, A. Lapadatu, G. Kittilsland, S. Martinsen, N. Roxhed, A. C. Fischer, G. Stemme, B. Samel, P. Ericsson, N. Høivik, T. Bakke, M. Bring, T. Kvisterøy, A. Rør, F. Niklaus. CMOS-integrated Si/SiGe quantum-well infrared microbolometer focal plane arrays manufactured with very large-scale heterogeneous 3-D integration. IEEE J. Sel. Top. Quantum Electron., 21, 2700111(2015).

    [24] T. Tekin. Review of packaging of optoelectronic, photonic, and MEMS components. IEEE J. Sel. Top. Quantum Electron., 17, 704-719(2011).

    [25] A. Hilton, D. S. Temple. Wafer-level vacuum packaging of smart sensors. Sensors, 16, 1819(2016).

    [26] X. Wang, S. J. Bleiker, P. Edinger, C. Errando-Herranz, N. Roxhed, G. Stemme, K. B. Gylfason, F. Niklaus. Wafer-level vacuum sealing by transfer bonding of silicon caps for small footprint and ultra-thin MEMS packages. J. Microelectromech. Syst., 28, 460-471(2019).

    [27] S.-H. Lee, J. Mitchell, W. Welch, S. Lee, K. Najafi. Wafer-level vacuum/hermetic packaging technologies for MEMS. Proc. SPIE, 7592, 759205(2010).

    [28] N. Pavarelli, J. S. Lee, M. Rensing, C. Scarcella, S. Zhou, P. Ossieur, P. A. O’Brien. Optical and electronic packaging processes for silicon photonic systems. J. Lightwave Technol., 33, 991-997(2015).

    [29] L. Zimmermann, G. B. Preve, T. Tekin, T. Rosin, K. Landles. Packaging and assembly for integrated photonics—a review of the ePIXpack photonics packaging platform. IEEE J. Sel. Top. Quantum Electron., 17, 645-651(2011).

    [30] K. Najafi. Micropackaging technologies for integrated microsystems: applications to MEMS and MOEMS. Proc. SPIE, 4979, 1-19(2003).

    [31] P. D. John, H. Lau. 3D IC Integration and Packaging(2016).

    [32] K. Zoschke, P. Mackowiak, K. Kröhnert, H. Oppermann, N. Jürgensen, M. Wietstruck, A. Göritz, S. Tolunay Wipf, M. Kaynak, K.-D. Lang. Cap fabrication and transfer bonding technology for hermetic and quasi hermetic wafer level MEMS packaging. IEEE 70th Electronic Components and Technology Conference (ECTC), 432-438(2020).

    [33] G. Jo, P. Edinger, S. J. Bleiker, X. Wang, A. Y. Takabayashi, H. Sattari, N. Quack, M. Jezzini, P. Verheyen, G. Stemme, W. Bogaerts, K. B. Gylfason, F. Niklaus. Wafer-level vacuum sealing for packaging of silicon photonic MEMS. Proc. SPIE, 11691, 116910E(2021).

    [34] M. Pantouvaki, S. A. Srinivasan, Y. Ban, P. D. Heyn, P. Verheyen, G. Lepage, H. Chen, J. D. Coster, N. Golshani, S. Balakrishnan, P. Absil, J. V. Campenhout. Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform. J. Lightwave Technol., 35, 631-638(2017).

    [35] N. Quack, H. Sattari, A. Y. Takabayashi, Y. Zhang, P. Verheyen, W. Bogaerts, P. Edinger, C. Errando-Herranz, K. B. Gylfason. MEMS-enabled silicon photonic integrated devices and circuits. IEEE J. Quantum Electron., 56, 8400210(2020).

    [36] P. P. Absil, P. D. Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. D. Coster, A. Khanna, Y. Drissi, D. V. Thourhout, J. V. Campenhout. IMEC iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform. Proc. SPIE, 9367, 93670V(2015).

    [37] D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. V. Thourhout, G. Roelkens. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. Opt. Express, 18, 18278-18283(2010).

    Tools

    Get Citation

    Copy Citation Text

    Gaehun Jo, Pierre Edinger, Simon J. Bleiker, Xiaojing Wang, Alain Yuji Takabayashi, Hamed Sattari, Niels Quack, Moises Jezzini, Jun Su Lee, Peter Verheyen, Iman Zand, Umar Khan, Wim Bogaerts, Göran Stemme, Kristinn B. Gylfason, Frank Niklaus, "Wafer-level hermetically sealed silicon photonic MEMS," Photonics Res. 10, A14 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: NEXT-GENERATION SILICON PHOTONICS

    Received: Aug. 25, 2021

    Accepted: Nov. 23, 2021

    Published Online: Jan. 13, 2022

    The Author Email: Kristinn B. Gylfason (gylfason@kth.se), Frank Niklaus (frank@kth.se)

    DOI:10.1364/PRJ.441215

    Topics