Chinese Journal of Lasers, Volume. 48, Issue 12, 1201008(2021)

Recent Trend of High Repetition Rate Ultrashort Laser Pulse Generation and Frequency Conversion

Jiaqi Zheng1, Zhenhua Cong1,2, Zhaojun Liu1,2, Shang Wang2, and Zhigang Zhao1,2,3、*
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • 2Shandong Provincial Key Laboratory of Laser Technologies and Applications, Qingdao, Shandong 266237, China
  • 3State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    References(132)

    [7] Kerse C, Kalaycıoğlu H, Elahi P et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 537, 84-88(2016).

    [9] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy[J]. Optica, 3, 414-426(2016).

    [11] Newman Z L, Maurice V, Drake T et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 6, 680-685(2019).

    [12] Kliebisch O, Heinecke D C, Dekorsy T. Ultrafast time-domain spectroscopy system using 10 GHz asynchronous optical sampling with 100 kHz scan rate[J]. Optics Express, 24, 29930-29940(2016).

    [13] Wang F. Study on generation and application of high energy DUV lasers[D](2020).

    [15] Ma J Z. Angle-resolved photoemission spectroscopy study of topological materials[D](2017).

    [17] Tang D Y, Zhao L M, Zhao B et al. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers[J]. Physical Review A, 72, 043816(2005).

    [19] Zhou S A, Ouzounov D G, Wise F W. Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rates to 1.5 GHz[J]. Optics Letters, 31, 1041-1043(2006).

    [24] Yang C. Investigation of high repetition rate ytterbium-doped dual repetition-rate mode-locked laser system[D](2018).

    [25] Kimura S, Tani S, Kobayashi Y. Kerr-lens mode locking above a 20 GHz repetition rate[J]. Optica, 6, 532-533(2019).

    [28] Lorenser D, Maas D J H C, Unold H J et al. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power[J]. IEEE Journal of Quantum Electronics, 42, 838-847(2006).

    [29] Kerse C, KalaycIoğlu H, Elahi P et al. 3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser[J]. Optics Communications, 366, 404-409(2016).

    [30] Bonamis G, Audouard E, Hönninger C et al. Systematic study of laser ablation with GHz bursts of femtosecond pulses[J]. Optics Express, 28, 27702-27714(2020).

    [33] Bartulevicius T, Madeikis K, Veselis L et al. Active fiber loop for synthesizing GHz bursts of equidistant ultrashort pulses[J]. Optics Express, 28, 13059-13067(2020).

    [36] Wang Y, Liu Y Z, Zhang Z G et al. 97-Watt, 1.08-Gigahertz repetition rate, femtosecond Yb: fiber laser source[C]. //14th Pacific Rim Conference on Lasers and Electro-Optics (CLEO PR 2020), August 3-5, 2020, Sydney, Australia, C2A_2(2020).

    [39] Zhou Y, Lin W, Cheng H H et al. Composite filtering effect in a SESAM mode-locked fiber laser with a 3.2 GHz fundamental repetition rate: switchable states from single soliton to pulse bunch: erratum[J]. Optics Express, 26, 17458(2018).

    [40] Wang W L, Lin W, Cheng H H et al. Gain-guided soliton: scaling repetition rate of passively modelocked Yb-doped fiber lasers to 12.5 GHz[J]. Optics Express, 27, 10438-10448(2019).

    [42] Liu Y, Lin W, Wang W et al. 130 W, 1.2 GHz femtosecond all-fiber laser at 1.0 μm[C]. //2020 Conference on Lasers and Electro-Optics(CLEO), May 10-15, 2020, San Jose, CA, United States., 1-2(2020).

    [43] Bonamis G, Audouard E, Hönninger C et al. Systematic study of laser ablation with GHz bursts of femtosecond pulses[J]. Optics Express, 28, 27702-27714(2020).

    [44] Kobayashi Y, Nomura Y, Watanabe S. 1.3-GHz, 20-W, femtosecond chirped-pulse amplifier system[C]. //2010 Conference on Lasers and Electro-Optics(CLEO), May 16-21, San Jose, California, United States, CMN3(2010).

    [45] Hartl I, Romann A, Fermann M E. Passively mode locked GHz femtosecond Yb-fiber laser using an intra-cavity Martinez compressor[C]. //2011 Conference on Lasers and Electro-Optics (CLEO), May 1-6, 2011, Baltimore, Maryland, USA, CMD3(2011).

    [48] Marion D, Lhermite J, Pontagnier L et al. 1 to 18 GHz tunable intra-burst repetition rate high-power picosecond fiber laser for ultrafast material processing[C]. //Laser Congress 2018 (ASSL), November 4-8, 2018, Boston, Massachusetts, United States, ATh5A, 5(2018).

    [49] Bonamis G, Mishchik K, Lopez J et al. Industrial GHz femtosecond laser source for high efficiency ablation[C]. //2018 Conference on Lasers and Electro-Optics(CLEO), May 13-18, 2018, San Jose, California, USA, AM2M, 4(2018).

    [50] Bonamis G, Sanabria J, Audouard E et al. 20-W ultraviolet femtosecond GHz burst laser[C]. //2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 23-27, 2019, Munich, Germany., 1(2019).

    [52] Zhao S Z. Nonlinear optics[M](2007).

    [60] Kojima T, Konno S, Fujikawa S et al. 20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser[J]. Optics Letters, 25, 58-60(2000).

    [61] He J L, Lu X Q, Jia Y L et al. All-solid-state Nd∶YVO4 UV laser at 266 nm by fourth harmonic using a BBO crystal[J]. Acta Physica Sinica, 49, 2106-2108(2000).

    [62] Konno S, Inoue Y, Kojima T et al. Efficient high-pulse-energy green-beam generation by intracavity frequency doubling of a quasi-continuous-wave laser-diode-pumped Nd∶YAG laser[J]. Applied Optics, 40, 4341-4343(2001).

    [63] Chang L B, Wang S C, Kung A H. Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system[J]. Optics Communications, 209, 397-401(2002).

    [64] Kliner D A V, Teodoro F D, Koplow J P et al. Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier[J]. Optics Communications, 210, 393-398(2002).

    [65] Jia Y L. 355 nm\266 nm all-solid-state ultraviolet laser[D](2002).

    [66] Kawai H, Tokuhisa A, Doi M et al. UV light source using fiber amplifier and nonlinear wavelength conversion[C]. //2003 Conference on Lasers and Electro-Optics(CLEO), June 1-6, 2003, Baltimore, Maryland, United States, CTuT4(2003).

    [67] Nishioka M, Fukumoto S, Kawamura F et al. Improvement of laser-induced damage tolerance in CsLiB6O10 for high-power UV laser source[C]. //2003 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference(CLEO), June 1-6, 2003, Baltimore, Maryland, United States, CTuF2(2003).

    [68] Wang G L, Geng A C, Bo Y et al. 28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser[J]. Optics Communications, 259, 820-822(2006).

    [69] Liu Q, Yan X P, Fu X et al. High power all-solid-state fourth harmonic generation of 266 nm at the pulse repetition rate of 100 kHz[J]. Laser Physics Letters, 6, 203-206(2009).

    [70] Xiang Z, Ge J H, Zhao Z G et al. 1.9-W flash-lamp-pumped solid-state 266-nm ultraviolet laser[J]. Chinese Optics Letters, 7, 502-504(2009).

    [71] Diening A, McLean S, Starodoumov A. High average power 258 nm generation in a nanosecond fiber MOPA system[J]. Proceedings of SPIE, 7195, 71950H(2009).

    [73] Zhuang F J, Ye N, Huang C H et al. Multi-reflected enhancement of fourth harmonic DUV laser generation at 266 nm[J]. Optics Express, 18, 25339-25345(2010).

    [79] Nikitin D G, Byalkovskiy O A, Vershinin O I et al. Sum frequency generation of UV laser radiation at 266 nm in LBO crystal[J]. Optics Letters, 41, 1660-1663(2016).

    [80] Mu X D, Steinvurzel P, Rose T S et al. High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier[J]. Proceedings of SPIE, 9731, 973108(2016).

    [81] Goldberg L, Cole B, McIntosh C et al. Narrow-band 1 W source at 257 nm using frequency quadrupled passively Q-switched Yb∶YAG laser[J]. Optics Express, 24, 17397-17405(2016).

    [82] Xuan H W, Qu C, Ito S et al. High-power and high-conversion efficiency deep ultraviolet (DUV) laser at 258 nm generation in the CsLiB6O10 (CLBO) crystal with a beam quality of M2<1.5[J]. Optics Letters, 42, 3133-3136(2017).

    [83] Köhler B, Andres T, Nebel A et al. High-power, high-repetition-rate fourth and fifth harmonic generation of a cw mode locked Nd∶YVO4 laser[C]. //Conference on Lasers and Electro-Optics (CLEO 2000), May 7-12, 2000, San Francisco, CA, USA., 142-143(2000).

    [85] Orii Y, Takushima Y, Yamagaki M et al. High-energy 266-nm picosecond pulse generation from a narrow spectral bandwidth gain-switched LD MOPA[C]. //CLEO: QELS_Fundamental Science 2013, June 9-14, 2013, San Jose, California United States, JTh2A, 64(2013).

    [87] Kumar S C, Casals J C, Wei J X et al. High-power, high-repetition-rate performance characteristics of β-BaB2O4 for single-pass picosecond ultraviolet generation at 266 nm[J]. Optics Express, 23, 28091-28103(2015).

    [90] Li C, Xuan H W, Winkelmann L et al. 3 GHz, 257 nm picosecond source for electron guns[C]. //2018 Europhoton, September 2-7, 2018, Barcelona, Spain, 04177(2018).

    [92] Orii Y, Kono K. World's highest output high-repetition deep-ultraviolet picosecond pulsed laser[J]. Optical Alliance, 10, 12-15(2019).

    [95] Zhou X Y, Yoshitomi D, Kobayashi Y et al. 1 W average-power 100 MHz repetition-rate 259 nm femtosecond deep ultraviolet pulse generation from ytterbium fiber amplifier[J]. Optics Letters, 35, 1713-1715(2010).

    [96] Müller M, Klenke A, Gottschall T et al. High-average-power femtosecond laser at 258 nm[J]. Optics Letters, 42, 2826-2829(2017).

    [99] Jones M D, Massey G A. Milliwatt-level 213 nm source based on a repetitively Q-switched, CW-pumped Nd∶YAG laser[J]. IEEE Journal of Quantum Electronics, 15, 204-206(1979).

    [100] Wiechmann W, Liu L Y, Oka M et al. Efficient high-repetition-rate all-solid-state fifth harmonic generation from a diode-pumped Q-switched Nd∶YAG laser[C]. //1995 Conference on Lasers and Electro-Optics(CLEO), May 21-26, 1995, Baltimore, Maryland, United States, CPD19(1995).

    [101] Petersen A B, Nighan W L. High-repetition-rate UV generation with diode-pumped Nd∶YVO4 lasers[C]. //1995 Conference on Lasers and Electro-Optics(CLEO), May 21-26, 1995, Baltimore, Maryland, United States, CWG2(1995).

    [102] Wu R K, Myers M J, Myers J D et al. 560 mW, fifth harmonic (213 nm), 200 Hz flashlamp pumped Nd∶YAG laser system[C]. //1996 OSA Trends in Optics and Photonics Series, January 31, 1996, San Francisco, California, FC4(1996).

    [103] Yap Y K, Inagaki M, Nakajima S et al. High-power fourth-and fifth-harmonic generation of a Nd∶YAG laser by means of a CsLiB6O10[J]. Optics Letters, 21, 1348-1350(1996).

    [104] Yap Y K, Mori Y, Haramura S et al. High power all-solid-state ultraviolet laser by CLBO crystal[C]. //1997 Advanced Solid State Lasers, January 27, 1997, Orlando, Florida, US3(1997).

    [105] Masuda H, Kikuchi H, Mori H et al. Single frequency 0.5 W generation at 213 nm from an injection-seeded, diode-pumped, high-repetition-rate, Q-switched Nd∶YAG laser[C]. //1997 OSA Trends in Optics and Photonics Series, January 27, 1997, Orlando, Florida, United States, US1(1997).

    [106] Kung A H, Chen P J. Jr-i L, et al. Compact solid state UV laser for photochemistry and materials processing[J]. Proceedings of SPIE, 3272, 100-104(1998).

    [109] Chang L B, Wang S C, Kung A H. Numerical analysis of fifth-harmonic conversion of low-power pulsed Nd∶YAG laser with resonance of second harmonic[J]. Japanese Journal of Applied Physics, 42, 4318-4324(2003).

    [110] Wall K F, Smucz J S, Pati B et al. A quasi-continuous-wave deep ultraviolet laser source[J]. IEEE Journal of Quantum Electronics, 39, 1160-1169(2003).

    [112] Katsura T, Kojima T, Kurosawa M et al. High-power, high-repetition UV beam generation with an all-solid-state laser[C]. //2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference, June 17-22, 2007, Munich, Germany., 1(2007).

    [113] Bykov S V, Mao M, Gares K L et al. Compact solid-state 213 nm laser enables standoff deep ultraviolet Raman spectrometer: measurements of nitrate photochemistry[J]. Applied Spectroscopy, 69, 895-901(2015).

    [115] Willenberg B, Brunner F, Phillips C R et al. High-power picosecond deep-UV source via group velocity matched frequency conversion[J]. Optica, 7, 485-491(2020).

    [116] Chu Y X, Zhang X D, Chen B B et al. Picosecond high-power 213-nm deep-ultraviolet laser generation using β-BaB2O4 crystal[J]. Optics & Laser Technology, 134, 106657(2021).

    [119] Sohn Y J, Quintanilha R, Barnes B M et al. 193 nm angle-resolved scatter field microscope for semiconductor metrology[J]. Proceedings of SPIE, 7405, 74050R(2009).

    [124] Kanai T, Wang X Y, Adachi S et al. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device[J]. Optics Express, 17, 8696-8703(2009).

    [129] Sakuma J, Moriizumi K, Kusunose H. True CW 193.4-nm light generation based on frequency conversion of fiber amplifiers[J]. Optics Express, 19, 15020-15025(2011).

    [131] Xuan H W, Zhao Z G, Igarashi H et al. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers[J]. Optics Express, 23, 10564-10572(2015).

    [132] Xuan H W, Qu C, Zhao Z G et al. 1 W solid-state 193 nm coherent light by sum-frequency generation[J]. Optics Express, 25, 29172-29179(2017).

    Tools

    Get Citation

    Copy Citation Text

    Jiaqi Zheng, Zhenhua Cong, Zhaojun Liu, Shang Wang, Zhigang Zhao. Recent Trend of High Repetition Rate Ultrashort Laser Pulse Generation and Frequency Conversion[J]. Chinese Journal of Lasers, 2021, 48(12): 1201008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Feb. 23, 2021

    Accepted: Apr. 12, 2021

    Published Online: Jun. 7, 2021

    The Author Email: Zhao Zhigang (zhigang@sdu.edu.cn)

    DOI:10.3788/CJL202148.1201008

    Topics