Chinese Journal of Lasers, Volume. 48, Issue 12, 1201008(2021)
Recent Trend of High Repetition Rate Ultrashort Laser Pulse Generation and Frequency Conversion
[7] Kerse C, Kalaycıoğlu H, Elahi P et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 537, 84-88(2016).
[9] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy[J]. Optica, 3, 414-426(2016).
[11] Newman Z L, Maurice V, Drake T et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 6, 680-685(2019).
[12] Kliebisch O, Heinecke D C, Dekorsy T. Ultrafast time-domain spectroscopy system using 10 GHz asynchronous optical sampling with 100 kHz scan rate[J]. Optics Express, 24, 29930-29940(2016).
[13] Wang F. Study on generation and application of high energy DUV lasers[D](2020).
[15] Ma J Z. Angle-resolved photoemission spectroscopy study of topological materials[D](2017).
[17] Tang D Y, Zhao L M, Zhao B et al. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers[J]. Physical Review A, 72, 043816(2005).
[19] Zhou S A, Ouzounov D G, Wise F W. Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rates to 1.5 GHz[J]. Optics Letters, 31, 1041-1043(2006).
[24] Yang C. Investigation of high repetition rate ytterbium-doped dual repetition-rate mode-locked laser system[D](2018).
[25] Kimura S, Tani S, Kobayashi Y. Kerr-lens mode locking above a 20 GHz repetition rate[J]. Optica, 6, 532-533(2019).
[28] Lorenser D, Maas D J H C, Unold H J et al. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power[J]. IEEE Journal of Quantum Electronics, 42, 838-847(2006).
[29] Kerse C, KalaycIoğlu H, Elahi P et al. 3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser[J]. Optics Communications, 366, 404-409(2016).
[30] Bonamis G, Audouard E, Hönninger C et al. Systematic study of laser ablation with GHz bursts of femtosecond pulses[J]. Optics Express, 28, 27702-27714(2020).
[33] Bartulevicius T, Madeikis K, Veselis L et al. Active fiber loop for synthesizing GHz bursts of equidistant ultrashort pulses[J]. Optics Express, 28, 13059-13067(2020).
[36] Wang Y, Liu Y Z, Zhang Z G et al. 97-Watt, 1.08-Gigahertz repetition rate, femtosecond Yb: fiber laser source[C]. //14th Pacific Rim Conference on Lasers and Electro-Optics (CLEO PR 2020), August 3-5, 2020, Sydney, Australia, C2A_2(2020).
[39] Zhou Y, Lin W, Cheng H H et al. Composite filtering effect in a SESAM mode-locked fiber laser with a 3.2 GHz fundamental repetition rate: switchable states from single soliton to pulse bunch: erratum[J]. Optics Express, 26, 17458(2018).
[40] Wang W L, Lin W, Cheng H H et al. Gain-guided soliton: scaling repetition rate of passively modelocked Yb-doped fiber lasers to 12.5 GHz[J]. Optics Express, 27, 10438-10448(2019).
[42] Liu Y, Lin W, Wang W et al. 130 W, 1.2 GHz femtosecond all-fiber laser at 1.0 μm[C]. //2020 Conference on Lasers and Electro-Optics(CLEO), May 10-15, 2020, San Jose, CA, United States., 1-2(2020).
[43] Bonamis G, Audouard E, Hönninger C et al. Systematic study of laser ablation with GHz bursts of femtosecond pulses[J]. Optics Express, 28, 27702-27714(2020).
[44] Kobayashi Y, Nomura Y, Watanabe S. 1.3-GHz, 20-W, femtosecond chirped-pulse amplifier system[C]. //2010 Conference on Lasers and Electro-Optics(CLEO), May 16-21, San Jose, California, United States, CMN3(2010).
[45] Hartl I, Romann A, Fermann M E. Passively mode locked GHz femtosecond Yb-fiber laser using an intra-cavity Martinez compressor[C]. //2011 Conference on Lasers and Electro-Optics (CLEO), May 1-6, 2011, Baltimore, Maryland, USA, CMD3(2011).
[48] Marion D, Lhermite J, Pontagnier L et al. 1 to 18 GHz tunable intra-burst repetition rate high-power picosecond fiber laser for ultrafast material processing[C]. //Laser Congress 2018 (ASSL), November 4-8, 2018, Boston, Massachusetts, United States, ATh5A, 5(2018).
[49] Bonamis G, Mishchik K, Lopez J et al. Industrial GHz femtosecond laser source for high efficiency ablation[C]. //2018 Conference on Lasers and Electro-Optics(CLEO), May 13-18, 2018, San Jose, California, USA, AM2M, 4(2018).
[50] Bonamis G, Sanabria J, Audouard E et al. 20-W ultraviolet femtosecond GHz burst laser[C]. //2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 23-27, 2019, Munich, Germany., 1(2019).
[52] Zhao S Z. Nonlinear optics[M](2007).
[60] Kojima T, Konno S, Fujikawa S et al. 20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser[J]. Optics Letters, 25, 58-60(2000).
[61] He J L, Lu X Q, Jia Y L et al. All-solid-state Nd∶YVO4 UV laser at 266 nm by fourth harmonic using a BBO crystal[J]. Acta Physica Sinica, 49, 2106-2108(2000).
[62] Konno S, Inoue Y, Kojima T et al. Efficient high-pulse-energy green-beam generation by intracavity frequency doubling of a quasi-continuous-wave laser-diode-pumped Nd∶YAG laser[J]. Applied Optics, 40, 4341-4343(2001).
[63] Chang L B, Wang S C, Kung A H. Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system[J]. Optics Communications, 209, 397-401(2002).
[64] Kliner D A V, Teodoro F D, Koplow J P et al. Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier[J]. Optics Communications, 210, 393-398(2002).
[65] Jia Y L. 355 nm\266 nm all-solid-state ultraviolet laser[D](2002).
[66] Kawai H, Tokuhisa A, Doi M et al. UV light source using fiber amplifier and nonlinear wavelength conversion[C]. //2003 Conference on Lasers and Electro-Optics(CLEO), June 1-6, 2003, Baltimore, Maryland, United States, CTuT4(2003).
[67] Nishioka M, Fukumoto S, Kawamura F et al. Improvement of laser-induced damage tolerance in CsLiB6O10 for high-power UV laser source[C]. //2003 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference(CLEO), June 1-6, 2003, Baltimore, Maryland, United States, CTuF2(2003).
[68] Wang G L, Geng A C, Bo Y et al. 28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser[J]. Optics Communications, 259, 820-822(2006).
[69] Liu Q, Yan X P, Fu X et al. High power all-solid-state fourth harmonic generation of 266 nm at the pulse repetition rate of 100 kHz[J]. Laser Physics Letters, 6, 203-206(2009).
[70] Xiang Z, Ge J H, Zhao Z G et al. 1.9-W flash-lamp-pumped solid-state 266-nm ultraviolet laser[J]. Chinese Optics Letters, 7, 502-504(2009).
[71] Diening A, McLean S, Starodoumov A. High average power 258 nm generation in a nanosecond fiber MOPA system[J]. Proceedings of SPIE, 7195, 71950H(2009).
[73] Zhuang F J, Ye N, Huang C H et al. Multi-reflected enhancement of fourth harmonic DUV laser generation at 266 nm[J]. Optics Express, 18, 25339-25345(2010).
[79] Nikitin D G, Byalkovskiy O A, Vershinin O I et al. Sum frequency generation of UV laser radiation at 266 nm in LBO crystal[J]. Optics Letters, 41, 1660-1663(2016).
[80] Mu X D, Steinvurzel P, Rose T S et al. High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier[J]. Proceedings of SPIE, 9731, 973108(2016).
[81] Goldberg L, Cole B, McIntosh C et al. Narrow-band 1 W source at 257 nm using frequency quadrupled passively Q-switched Yb∶YAG laser[J]. Optics Express, 24, 17397-17405(2016).
[82] Xuan H W, Qu C, Ito S et al. High-power and high-conversion efficiency deep ultraviolet (DUV) laser at 258 nm generation in the CsLiB6O10 (CLBO) crystal with a beam quality of M2<1.5[J]. Optics Letters, 42, 3133-3136(2017).
[83] Köhler B, Andres T, Nebel A et al. High-power, high-repetition-rate fourth and fifth harmonic generation of a cw mode locked Nd∶YVO4 laser[C]. //Conference on Lasers and Electro-Optics (CLEO 2000), May 7-12, 2000, San Francisco, CA, USA., 142-143(2000).
[85] Orii Y, Takushima Y, Yamagaki M et al. High-energy 266-nm picosecond pulse generation from a narrow spectral bandwidth gain-switched LD MOPA[C]. //CLEO: QELS_Fundamental Science 2013, June 9-14, 2013, San Jose, California United States, JTh2A, 64(2013).
[87] Kumar S C, Casals J C, Wei J X et al. High-power, high-repetition-rate performance characteristics of β-BaB2O4 for single-pass picosecond ultraviolet generation at 266 nm[J]. Optics Express, 23, 28091-28103(2015).
[90] Li C, Xuan H W, Winkelmann L et al. 3 GHz, 257 nm picosecond source for electron guns[C]. //2018 Europhoton, September 2-7, 2018, Barcelona, Spain, 04177(2018).
[92] Orii Y, Kono K. World's highest output high-repetition deep-ultraviolet picosecond pulsed laser[J]. Optical Alliance, 10, 12-15(2019).
[95] Zhou X Y, Yoshitomi D, Kobayashi Y et al. 1 W average-power 100 MHz repetition-rate 259 nm femtosecond deep ultraviolet pulse generation from ytterbium fiber amplifier[J]. Optics Letters, 35, 1713-1715(2010).
[96] Müller M, Klenke A, Gottschall T et al. High-average-power femtosecond laser at 258 nm[J]. Optics Letters, 42, 2826-2829(2017).
[99] Jones M D, Massey G A. Milliwatt-level 213 nm source based on a repetitively Q-switched, CW-pumped Nd∶YAG laser[J]. IEEE Journal of Quantum Electronics, 15, 204-206(1979).
[100] Wiechmann W, Liu L Y, Oka M et al. Efficient high-repetition-rate all-solid-state fifth harmonic generation from a diode-pumped Q-switched Nd∶YAG laser[C]. //1995 Conference on Lasers and Electro-Optics(CLEO), May 21-26, 1995, Baltimore, Maryland, United States, CPD19(1995).
[101] Petersen A B, Nighan W L. High-repetition-rate UV generation with diode-pumped Nd∶YVO4 lasers[C]. //1995 Conference on Lasers and Electro-Optics(CLEO), May 21-26, 1995, Baltimore, Maryland, United States, CWG2(1995).
[102] Wu R K, Myers M J, Myers J D et al. 560 mW, fifth harmonic (213 nm), 200 Hz flashlamp pumped Nd∶YAG laser system[C]. //1996 OSA Trends in Optics and Photonics Series, January 31, 1996, San Francisco, California, FC4(1996).
[103] Yap Y K, Inagaki M, Nakajima S et al. High-power fourth-and fifth-harmonic generation of a Nd∶YAG laser by means of a CsLiB6O10[J]. Optics Letters, 21, 1348-1350(1996).
[104] Yap Y K, Mori Y, Haramura S et al. High power all-solid-state ultraviolet laser by CLBO crystal[C]. //1997 Advanced Solid State Lasers, January 27, 1997, Orlando, Florida, US3(1997).
[105] Masuda H, Kikuchi H, Mori H et al. Single frequency 0.5 W generation at 213 nm from an injection-seeded, diode-pumped, high-repetition-rate, Q-switched Nd∶YAG laser[C]. //1997 OSA Trends in Optics and Photonics Series, January 27, 1997, Orlando, Florida, United States, US1(1997).
[106] Kung A H, Chen P J. Jr-i L, et al. Compact solid state UV laser for photochemistry and materials processing[J]. Proceedings of SPIE, 3272, 100-104(1998).
[109] Chang L B, Wang S C, Kung A H. Numerical analysis of fifth-harmonic conversion of low-power pulsed Nd∶YAG laser with resonance of second harmonic[J]. Japanese Journal of Applied Physics, 42, 4318-4324(2003).
[110] Wall K F, Smucz J S, Pati B et al. A quasi-continuous-wave deep ultraviolet laser source[J]. IEEE Journal of Quantum Electronics, 39, 1160-1169(2003).
[112] Katsura T, Kojima T, Kurosawa M et al. High-power, high-repetition UV beam generation with an all-solid-state laser[C]. //2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference, June 17-22, 2007, Munich, Germany., 1(2007).
[113] Bykov S V, Mao M, Gares K L et al. Compact solid-state 213 nm laser enables standoff deep ultraviolet Raman spectrometer: measurements of nitrate photochemistry[J]. Applied Spectroscopy, 69, 895-901(2015).
[115] Willenberg B, Brunner F, Phillips C R et al. High-power picosecond deep-UV source via group velocity matched frequency conversion[J]. Optica, 7, 485-491(2020).
[116] Chu Y X, Zhang X D, Chen B B et al. Picosecond high-power 213-nm deep-ultraviolet laser generation using β-BaB2O4 crystal[J]. Optics & Laser Technology, 134, 106657(2021).
[119] Sohn Y J, Quintanilha R, Barnes B M et al. 193 nm angle-resolved scatter field microscope for semiconductor metrology[J]. Proceedings of SPIE, 7405, 74050R(2009).
[124] Kanai T, Wang X Y, Adachi S et al. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device[J]. Optics Express, 17, 8696-8703(2009).
[129] Sakuma J, Moriizumi K, Kusunose H. True CW 193.4-nm light generation based on frequency conversion of fiber amplifiers[J]. Optics Express, 19, 15020-15025(2011).
[131] Xuan H W, Zhao Z G, Igarashi H et al. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers[J]. Optics Express, 23, 10564-10572(2015).
[132] Xuan H W, Qu C, Zhao Z G et al. 1 W solid-state 193 nm coherent light by sum-frequency generation[J]. Optics Express, 25, 29172-29179(2017).
Get Citation
Copy Citation Text
Jiaqi Zheng, Zhenhua Cong, Zhaojun Liu, Shang Wang, Zhigang Zhao. Recent Trend of High Repetition Rate Ultrashort Laser Pulse Generation and Frequency Conversion[J]. Chinese Journal of Lasers, 2021, 48(12): 1201008
Category: laser devices and laser physics
Received: Feb. 23, 2021
Accepted: Apr. 12, 2021
Published Online: Jun. 7, 2021
The Author Email: Zhao Zhigang (zhigang@sdu.edu.cn)