Chinese Journal of Lasers, Volume. 48, Issue 12, 1201008(2021)

Recent Trend of High Repetition Rate Ultrashort Laser Pulse Generation and Frequency Conversion

Jiaqi Zheng1, Zhenhua Cong1,2, Zhaojun Liu1,2, Shang Wang2, and Zhigang Zhao1,2,3、*
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • 2Shandong Provincial Key Laboratory of Laser Technologies and Applications, Qingdao, Shandong 266237, China
  • 3State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    Figures & Tables(28)
    Schematic diagram of Kerr lens mode-locked cavity[25]. (a) Bow-tie ring cavity; (b) proposed compact linear cavity structure
    Schematic diagram of 3.5 GHz laser repetition rate multiplier[29]
    Schematic diagram of fiber ring cavity filter device with dispersion compensation[31]
    Schematic of active fiber loop[33]
    Schematic of pulse trains envelope shaping in active fiber loop[33]
    Schematic diagram of GHz NIR and GHz DUV laser generation
    Schematic of 3 GHz 257 nm DUV laser[90]
    Schematic of 14 W 266 nm DUV laser[94]
    Schematic diagram of 20 W 258 nm DUV laser[93]
    Schematic diagram of GHz 258 nm DUV laser[98]
    Current status of DUV lasers at 258 nm and 266 nm (repetition rate-energy)
    Current status of DUV lasers at 258 nm and 266 nm (repetition rate-average power)
    Schematic diagram for principle of FiHG “1+4”. o light is ordinary light, e light is extraordinary light
    Schematic diagram for principle of FiHG “2+3”. o light is ordinary light, e light is extraordinary light and DWWP is dual wavelength wave plate
    Current status of DUV lasers at 206 nm and 213 nm (repetition rate-energy)
    Current status of DUV lasers at 206 nm and 213 nm (repetition rate-average power)
    Schematic diagram of 2.5 W 206 nm DUV laser[115]
    Characterization of 2.5 W 206 nm DUV laser sum-frequency generation output at 2 W average power[115]. (a) Cross-correlation signal of 4ω and 1ω beams; (b) output power versus crystal angle θ-offset; (c) spectrum of output laser
    Schematic diagram of 1.37 W 213 nm DUV laser[116]
    Schematic diagram of 1.1 GHz 208.8 nm DUV laser[118]
    Schematic diagram of 1 W 193 nm DUV laser[129]
    • Table 1. Research progresses of 1 μm band GHz repetition rate lasers[30, 36, 42, 44-51]

      View table

      Table 1. Research progresses of 1 μm band GHz repetition rate lasers[30, 36, 42, 44-51]

      YearWavelength /nmPulse widthOutput power /WRepetition rate /GHzRef. No.
      20101050180 fs201.30[44]
      20111050130 fs51.6[45]
      20121040890 fs1101.3[46]
      20141050300fs721.6[47]
      20181030800 fs-2ps201-18[48]
      20181030/1001.76[49]
      20191030480 fs1000.87[50]
      20201057473 fs1081.2[51]
      20201057868 fs1301.2[42]
      20201030310 fs1003.52[30]
      20201030233 fs971.08[36]
    • Table 2. Properties of common nonlinear optical crystals[53-59]

      View table

      Table 2. Properties of common nonlinear optical crystals[53-59]

      CrystalLBOBBOCLBOKABOKBBFRBBF
      Lattice structureorthorhombic systemtrigonal systemtetragonal systemtrigonal systemtrigonal systemtrigonal system
      Space groupPna21R3C/P321R32R32
      Point groupmm2/////
      Lattice constant /(10-10 m)a=8.4473b=7.3788c=5.1395a=12.532b=12.532 a=10.494b=10.494c=8.939a=8.53b=8.53c=8.409a=4.427b=4.427c=20.356a=4.4341b=4.4341c=19.758
      Unit numbers in cellz=2z=6z=4///
      Melting point /℃8341095844.5110910301030
      Mohs hardness6445.5-6.52.662.66
      Mass density /(g·cm-3)2.473.852.452.472.412.40
      Hygroscopicitylowlowhighlowlowlow
      Wavelength range /nm160-2600189-3500180-2750180-3600155-3660160-3550
    • Table 3. Research progress of 258 nm and 266 nm nanosecond DUV lasers[60-82]

      View table

      Table 3. Research progress of 258 nm and 266 nm nanosecond DUV lasers[60-82]

      YearFundamental wavelength /nmFundamental power /WOutput wavelength /nmOutput powerPulse width /nsRepetition rateRef. No.
      200053210626620.5 W8010 kHz[60]
      2000106401.2226663 mW3212.5 kHz[61]
      20015324026612 W701 kHz[62]
      2002106472662.1 W225 kHz[63]
      2002106400.3226669 mW00.973.7 kHz[64]
      2002106408.74266196 mW1218 kHz[65]
      200315473.1258800 mW1200 kHz[66]
      200353220026640 W807 kHz[67]
      200653212026628.4 W8010 kHz[68]
      200910648126614.8 W10100 kHz[69]
      20091064522661.9 W1207.5 kHz[70]
      200910314025814 W15 MHz[71]
      2010106414.30266374 mW520 kHz[72]
      201010642.4266289 mW59.8020 kHz[73]
      20111064222662.1 W1005 kHz[74]
      20111064802665.05 W22.5065 kHz[75]
      201210641502663 W1010 kHz[76]
      2013106418.802661.82 W1630 kHz[77]
      20131030222583.2 W1530 kHz[78]
      2016106424.502663.3 W1.51 MHz[79]
      20161064102661.85 W1.720 kHz[80]
      201610303.62581.1 W2.514.5 kHz[81]
      201710303525810.5 W310 kHz[82]
    • Table 4. Research progress of 258 nm and 266 nm picosecond DUV lasers[83-94]

      View table

      Table 4. Research progress of 258 nm and 266 nm picosecond DUV lasers[83-94]

      YearFundamental wavelength /nmFundamental power /WOutput wavelength /nmOutput powerPulse width /psRepetition rateRef. No.
      2000106427.42664.5 W782 MHz[83]
      20111064222660.93 W2578 MHz[84]
      20131064152664.5 W72100 kHz[85]
      2015103027.42582.74 W8.41 kHz[86]
      20151064202662.9 W2080 MHz[87]
      20161030602586 W4100 kHz[88]
      20181064342661.6 W2580 MHz[89]
      20181030102573 mW1.83 GHz[90]
      20191030332587.6 W1.577 kHz[91]
      2019106426026650.1 W151 MHz[92]
      2020103027025820 W1.210 kHz[93]
      20201064/26614 W13200 kHz[94]
    • Table 5. Research progress of 258 nm and 266 nm femtosecond DUV lasers[95-98]

      View table

      Table 5. Research progress of 258 nm and 266 nm femtosecond DUV lasers[95-98]

      YearFundamental wavelength /nmFundamental power /WOutput wavelength /nmOutput powerPulse width /fsRepetition rateRef. No.
      2010103011.52591 W262100 MHz[95]
      20171030402584.6 W150796 kHz[96]
      2019106404.8266616 mW26078 MHz[97]
      2020103010.4258523 mW50011.48 GHz[98]
    • Table 6. Research progress of 206 nm and 213 nm DUV lasers[63-64, 83, 88, 91, 99-117]

      View table

      Table 6. Research progress of 206 nm and 213 nm DUV lasers[63-64, 83, 88, 91, 99-117]

      YearFundamental wavelength /nmFundamental power /WOutput wavelength /nmOutput powerPulse widthRepetition rateRef. No.
      197910642.52132 mW80 ns4 kHz[99]
      199510646213400 mW37 ns7 kHz[100]
      19951064421331 mW20 ns20 kHz[101]
      1996106410213560 mW1.5 ns200 Hz[102]
      19961064222132.3 W7 ns10 Hz[103]
      19971064472134 W3 ns100 Hz[104]
      199710646.42130.5 W17.9 ns7 kHz[105]
      1998106402.13213100 mW/1 kHz[106]
      19991064421375 mW7 ns10 Hz[107]
      199910641213115mW/5 Hz[108]
      199910644213280 mW1.8 ns20 Hz[108]
      2000106427.402131.15 W7 ps82 MHz[83]
      200210647213540 mW/5 kHz[63]
      2002106400.3221318 mW/3.7 kHz[64]
      2003106472132 W/5 kHz[109]
      2003104715205250 mW/100 MHz[110]
      2005106472130.7 W7 ns20 Hz[111]
      2007106439521310.2 W/10 kHz[112]
      20151064/213100 mW15 ns30 kHz[113]
      20161030602060.8 W4 ps100 kHz[88]
      20191064242130.5 W40 ps120 MHz[114]
      20191030802061 W1.5 ps77 kHz[91]
      20201030652062.5 W1.6 ps100 kHz[115]
      20201064302131.37 W17 ps1 MHz[116]
      2020106410.5021361 mW690 ps5 MHz[117]
    • Table 7. Research progress of 193 nm DUV lasers[66, 125-132]

      View table

      Table 7. Research progress of 193 nm DUV lasers[66, 125-132]

      YearPump wavelength (NIR) /nmPump wavelength (DUV) /nmOutput powerPulse widthRepetition rateRef. No.
      19947742580.8 mW170 fs1 kHz[125]
      20031547221140 mW1 ns200 kHz[66]
      200320742133 mW3.5 ns4 Hz[126]
      20031064235.8200 mW/10 kHz[127]
      2007708.626635 mW15 ns5 kHz[128]
      20111107234.311.6 mW/CW[129]
      20141342224240 mW12.2 ns10 kHz[130]
      20151553221310 mW10 ns6 kHz[131]
      201715532211.02 W3 ns10 kHz[132]
    Tools

    Get Citation

    Copy Citation Text

    Jiaqi Zheng, Zhenhua Cong, Zhaojun Liu, Shang Wang, Zhigang Zhao. Recent Trend of High Repetition Rate Ultrashort Laser Pulse Generation and Frequency Conversion[J]. Chinese Journal of Lasers, 2021, 48(12): 1201008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Feb. 23, 2021

    Accepted: Apr. 12, 2021

    Published Online: Jun. 7, 2021

    The Author Email: Zhao Zhigang (zhigang@sdu.edu.cn)

    DOI:10.3788/CJL202148.1201008

    Topics