Journal of Synthetic Crystals, Volume. 54, Issue 6, 979(2025)
Effect of MOCVD Carrier Gas Flow Rate on GaN Epitaxial Growth
[1] ZHONG Y Z, ZHANG J W, WU S et al. A review on the GaN-on-Si power electronic devices. Fundamental Research, 2, 462-475(2022).
[2] UDABE A, BARAIA-ETXABURU I, DIEZ D G. Gallium nitride power devices: a state of the art review. IEEE Access, 11, 48628-48650(2023).
[3] GOSWAMI L, AGGARWAL N, VASHISHTHA P et al. Fabrication of GaN nano-towers based self-powered UV photodetector. Scientific Reports, 11, 10859(2021).
[4] XIA Z H, LI T K, REN G Q et al. Dislocation density evolution study of GaN single crystal growth by ammonothermal method. Journal of Synthetic Crystals, 53, 480-486(2024).
[5] MILAKHIN D, MALIN T, MANSUROV V et al. Tackling residual tensile stress in AlN-on-Si nucleation layers via the controlled Si(111) surface nitridation. Surfaces and Interfaces, 51, 104817(2024).
[6] TANG L, TANG B, ZHANG H et al. Review-review of research on AlGaN MOCVD growth. ECS Journal of Solid State Science and Technology, 9, 24009-24027(2020).
[7] NIU H D, YAO W Z, YANG S Y et al. Effects of pressure on GaN growth in a specific warm-wall MOCVD reactor. CrystEngComm, 25, 1263-1269(2023).
[8] SHEN Y, ZHANG X, FAN A J et al. Effects of V/Ⅲ ratio on structural, optical, and electrical properties of semi-polar high Al-content Si-doped n-AlGaN epi-layers. Materials Science in Semiconductor Processing, 151, 107002(2022).
[9] PANG B, SU X L. Research progress on effect of different carrier gases on the epitaxial growth of GaN. Modern Chemical Research, 2023, 8-11.
[10] ARIFIN P, SUTANTO H et al. Plasma-assisted MOCVD growth of non-polar GaN and AlGaN on Si(111) substrates utilizing GaN-AlN buffer layer. Coatings, 12, 94(2022).
[11] LI Y Z, YAO W Z, MA Z H et al. Effect of gas pre-decomposition device on the growth of GaN epitaxial layer. Semiconductor Science Technology, 39(2024).
[12] DENG X G, HAN J, XING Y H et al. Influence of H2 carrier gas on epitaxy of AlN buffer layer. Chinese Journal of Luminescence, 34, 776-781(2013).
[13] ZHANG H, TANG L. Density functional theory study on parasitic reactions of GaN-MOVPE. CIESC Journal, 70, 3275-3282(2019).
[14] MATSUMOTO K, TACHIBANA A. Growth mechanism of atmospheric pressure MOVPE of GaN and its alloys: gas phase chemistry and its impact on reactor design. Journal of Crystal Growth, 272, 360-369(2004).
[15] ZHAO D G, ZHU J J, JIANG D S et al. Parasitic reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition. Journal of Crystal Growth, 289, 72-75(2006).
[16] ZHANG Z, FANG H S, YAO Q X et al. Species transport and chemical reaction in a MOCVD reactor and their influence on the GaN growth uniformity. Journal of Crystal Growth, 454, 87-95(2016).
[17] HARDTDEGEN H, KALUZA A, GAUER D et al. On the influence of gas inlet configuration with respect to homogeneity in a horizontal single wafer MOVPE reactor. Journal of Crystal Growth, 223, 15-20(2001).
[18] BANAL R G, FUNATO M, KAWAKAMI Y. Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy. Applied Physics Letters, 92, 241905(2008).
[19] TARSA E J, HEYING B, WU X H et al. Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 82, 5472-5479(1997).
[20] WONG Y Y, CHANG E Y, WU Y H et al. Dislocation reduction in GaN film using Ga-lean GaN buffer layer and migration enhanced epitaxy. Thin Solid Films, 519, 6208-6213(2011).
[21] ZHANG Y H, YANG J, ZHAO D G et al. Adjustment of Al atom migration ability and its effect on the surface morphology of AlN grown on sapphire by metal-organic chemical vapor deposition. Semiconductor Science and Technology, 36, 105010(2021).
[22] WANG B B, YANG J, ZHAO D G et al. The mechanisms of AlGaN device buffer layer growth and crystalline quality improvement: restraint of gallium residues, mismatch stress relief, and control of aluminum atom migration length. Crystals, 12, 1131(2022).
[23] HEYING B, WU X H, KELLER S et al. Role of threading dislocation structure on the X-ray diffraction peak widths in epitaxial GaN films. Applied Physics Letters, 68, 643-645(1996).
[24] SU X J, ZHANG J C, HUANG J et al. Defect structure of high temperature hydride vapor phase epitaxy-grown epitaxial (0001) AlN/sapphire using growth mode modification process. Journal of Crystal Growth, 467, 82-87(2017).
[25] ZHANG J, YANG X L, FENG Y X et al. Vacancy-engineering-induced dislocation inclination in Ⅲ-nitrides on Si substrates. Physical Review Materials, 4(2020).
[26] PENG D S, FENG Y C, NIU H B. Lateral epitaxial overgrowth GaN thin film with MOCVD. Electronic Components and Materials, 28, 66-69(2009).
[27] LIU X T, LI D B, SUN X J et al. Stress-induced in situ epitaxial lateral overgrowth of high-quality GaN. CrystEngComm, 16, 8058-8063(2014).
[28] AHMED R, SIDDIQUE A, ANDERSON J et al. Integration of GaN and diamond using epitaxial lateral overgrowth. ACS Applied Materials & Interfaces, 12, 39397-39404(2020).
Get Citation
Copy Citation Text
Yazhou LI, Zhanhong MA, Weizhen YAO, Shaoyan YANG, Xianglin LIU, Chengming LI, Zhanguo WANG. Effect of MOCVD Carrier Gas Flow Rate on GaN Epitaxial Growth[J]. Journal of Synthetic Crystals, 2025, 54(6): 979
Category:
Received: Jan. 15, 2025
Accepted: --
Published Online: Jul. 8, 2025
The Author Email: Zhanhong MA (mzh@nxu.edu.cn), Weizhen YAO (wz-yao@semi.ac.cn)