Spectroscopy and Spectral Analysis, Volume. 42, Issue 11, 3336(2022)

Application of One-Class Classification Combined With Spectral Analysis in Food Authenticity Identification

Yi-yun TANG1、*, Rui LIU2、2;, Lu WANG2、2;, Hui-ying LÜ1、1; 4;, Zhong-hai TANG1、1; 4; *;, Hang XIAO1、1; 3;, Shi-yin GUO1、1; 4;, and Wei FAN1、1; 4; *;
Author Affiliations
  • 11. College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
  • 22. Baoshan Tobacco Company of Yunnan Province, Baoshan 678000, China
  • show less
    Figures & Tables(7)
    Schematic diagram of different classification methods
    Simulated data graph ofactual sample
    Simulated data graph of adulterated samples (three classes)
    Simulated data graph of adulterated samples (one class)
    • Table 1. Classification results of simulated adulterants of different classes

      View table
      View in Article

      Table 1. Classification results of simulated adulterants of different classes

      真/假PLS-DAOCPLS
      敏感性特异性敏感性特异性
      5/1 0000100%100%0
      50/1 0000100%100%100%
      500/1 000100%83.4%73.8%100%
      1 000/1 000100%75.6%83%100%
      1 000/500100%70.4%83%100%
      1 000/50100%60%83%100%
      1 000/5100%80%83%100%
    • Table 2. Classification results of simulated adulterants of one class

      View table
      View in Article

      Table 2. Classification results of simulated adulterants of one class

      真/假PLS-DAOCPLS
      敏感性特异性敏感性特异性
      5/1 0000100%100%0
      50/1 0000100%100%100%
      500/1 000100%84.4%73.8%100%
      1 000/1 000100%76.5%83%100%
      1 000/500100%75%83%100%
      1 000/50100%70%83%100%
      1 000/5100%80%83%100%
    • Table 3. Application of one-class classification combined with spectral analysis in food adulteration detection

      View table
      View in Article

      Table 3. Application of one-class classification combined with spectral analysis in food adulteration detection

      类别检测对象应用技术分析方法掺假物质检测结果参考文献
      食用油奇亚籽油和芝麻油傅里叶变换红外光谱OCPLS,
      SIMCA
      玉米油、 花生油、 大豆油和葵花籽油正确识别率都有94%以上[34]
      茶油近红外光谱和荧光光谱OCPLS菜籽油、 葵花籽油、 玉米油和花生油灵敏度为95.4%, 特异性为91%[35]
      初榨椰子油傅里叶变换衰减全反射红外光谱DD-SIMCA菜籽油、 玉米油、 葵花籽油和大豆油88%~100%的灵敏度, 96%~100%的特异性[36]
      菜籽油傅里叶变换红外光谱SIMCA, PLS-DA,
      DD-SIMCA和
      OCPLS
      玉米油、 花生油、 大豆油和葵花籽油SIMCA, PLS-DA, 的分类效果高于DD-SIMCA和OCPLS[37]
      亚麻籽油近红外光谱OCPLS菜籽油、 玉米油、 葵花籽油, 棉籽油和大豆油正确识别率95.8%[38]
      乳制品牛奶中红外光谱SIMCA甲醛、 过氧化氢、 碳酸氢盐、 碳酸酯和蔗糖82%的正确分类、 17%的不确定分类和1%分类错误[39]
      脱脂奶粉紫外-可见、 荧光和近红外光谱SIMCA和
      OCSVM
      氯化铵、 硝酸铵、 三聚氰胺和尿素总体准确率为86%[40]
      饮品正宗板蓝根茶傅里叶变换近红外光谱OCPLS干苹果皮准确率为93.6%[41]
      猕猴桃汁荧光光谱OCPLS糖浆和人造果粉灵敏度为92.9%[42]
      葡萄蜜酒低场核磁共振光谱OCPLS,
      DD-SIMCA
      和PLS-DA
      苹果汁、 腰果汁和混合果汁分辨率高于93%[43]
      保健品中草药天麻近红外光谱OCPLS芋头淀粉、 甘薯淀粉、 马铃薯淀粉和黄精粉灵敏度为91.07%[44]
      牛至药材近红外光谱PLS-DA,
      DD-SIMCA
      榛子、 橄榄叶和迷迭香等单类分类器功能强大[45]
      燕窝傅里叶变换红外光谱LDA, SVM
      和OCPLS
      银耳、 琼脂、 炸猪皮和蛋清灵敏度为93.7%, 特异度为88.6%[46]
      香辛料辣椒粉傅里叶变换中红外光谱DD-SIMCA苏丹Ⅰ、 苏丹Ⅳ、 铬酸铅、 氧化铅、 二氧化硅、 聚氯乙烯和阿拉伯胶所有掺假物的特异性>80%[47]
      辣椒粉核磁共振光谱DD-SIMCA偶氮红、 甜菜根和漆树粉灵敏度为92%[48]
      谷物木薯淀粉拉曼光谱OCSVM和
      SIMCA
      小麦粉和碳酸氢钠可检测掺假率超过2%的可能性[49]
      杏仁粉高光谱短波红外图像DD-SIMCA花生粉100%的敏感性和89%~100%的特异性[50]
      大豆粕近红外光谱DD-SIMCA三聚氰胺、 氰尿酸和混合掺假物灵敏度为98%[51]
    Tools

    Get Citation

    Copy Citation Text

    Yi-yun TANG, Rui LIU, Lu WANG, Hui-ying LÜ, Zhong-hai TANG, Hang XIAO, Shi-yin GUO, Wei FAN. Application of One-Class Classification Combined With Spectral Analysis in Food Authenticity Identification[J]. Spectroscopy and Spectral Analysis, 2022, 42(11): 3336

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 12, 2021

    Accepted: --

    Published Online: Nov. 23, 2022

    The Author Email: TANG Yi-yun (eviantyy420@163.com)

    DOI:10.3964/j.issn.1000-0593(2022)11-3336-09

    Topics