Journal of Nantong University (Natural Science Edition), Volume. 24, Issue 2, 64(2025)

A miniature amphibious crawling robot driven by piezoelectric actuator

WANG Le1,2, WANG Xin2, FEI Senjie1, and YAN Qiufeng3、*
Author Affiliations
  • 1School of Intelligent Manufacturing and Elevator, Huzhou Vocational and Technical College, Huzhou 313099, China
  • 2Huzhou Institute of Zhejiang University, Huzhou 313099, China
  • 3School of Electrical Engineering and Automation, Nantong University, Nantong 226019, China
  • show less
    References(25)

    [1] [1] LI J, DENG J, ZHANG S J, et al. Developments and challenges of miniature piezoelectric roobts: a review [J]. Advanced Science, 2023, 10(36): 2305128.

    [2] [2] WANG Y B, DU X Z, ZHANG H M, et al. Amphibious miniature soft jumping robot with on-demand in-flight maneuver[J]. Advanced Science, 2023, 10(18): 2207493.

    [3] [3] ZHAO Y, HONG Y Y, QI F J, et al. Self-sustained snapping drives autonomous dancing and motion in free-standing wavy rings[J]. Advanced Materials, 2023, 35(7): 2207372.

    [4] [4] NG C S X, TAN M W M, XU C Y, et al. Locomotion of miniature soft robots [J]. Advanced Materials, 2021, 33(19): 2003558.

    [5] [5] TANG C, DU B Y, JIANG S W, et al. A pipeline inspection robot for navigating tubular environments in the subcentimeter scale [J]. Science Robotics, 2022, 7(66): eabm8597.

    [6] [6] HUANG X N, KUMAR K, JAWED M K, et al. Chasing biomimetic locomotion speeds: creating untethered soft robots with shape memory alloy actuators[J]. Science Robotics, 2018, 3(25): eaau7557.

    [7] [7] LEE H T, SEICHEPINE F, YANG G Z. Microtentacle actuators: microtentacle actuators based on shape memory alloy smart soft composite(adv. funct. mater. 34/2020)[J]. Advanced Functional Materials, 2020, 30(34): 2070231.

    [8] [8] REN Z J, KIM S, JI X, et al. A high-lift micro-aerial-robot powered by low-voltage and long-endurance dielectric elastomer actuators[J]. Advanced Materials, 2022, 34(7): 2106757.

    [9] [9] CHEN Y F, ZHAO H C, MAO J, et al. Controlled flight of a microrobot powered by soft artificial muscles[J]. Nature, 2019, 575(7782): 324-329.

    [10] [10] GUO Y G, LIU L W, LIU Y J, et al. Review of dielectric elastomer actuators and their applications in soft robots[J]. Advanced Intelligent Systems, 2021, 3(10): 2000282.

    [11] [11] WU S, HONG Y Y, ZHAO Y, et al. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation[J]. Science Advances, 2023, 9(12): eadf8014.

    [12] [12] ZHANG J C, SOON R H, WEI Z H, et al. Liquid metalelastomer composites with dual-energy transmission mode for multifunctional miniature untethered magnetic robots[J]. Advanced Science, 2022, 9(31): 2203730.

    [13] [13] WANG X Q, CHAN K H, CHENG Y, et al. Somatosensory, light-driven, thin-film robots capable of integrated perception and motility[J]. Advanced Materials, 2020, 32(21): 2000351.

    [14] [14] SITTI M, WIERSMA D S. Pros and cons: magnetic versus optical microrobots[J]. Advanced Materials, 2020, 32(20): 1906766.

    [15] [15] CHANG Q B, GAO X, LIU Y X, et al. Development of a cross-scale 6-DOF piezoelectric stage and its application in assisted puncture [J]. Mechanical Systems and Signal Processing, 2022, 174: 109072.

    [16] [16] YANG T, AN H T, TANG X F, et al. A novel multi-asperity-based dynamic(MABD)model for piezoelectric actuator: theory, numerical framework, and experimental validation [J]. Applied Mathematical Modelling, 2025, 140: 115876.

    [17] [17] QI R, GE Y N, WANG L, et al. Electromechanical-coupling modeling and experimental validation of piezoelectric active vibration isolation for truss structures[J]. Mechanical Systems and Signal Processing, 2025, 224: 112178.

    [18] [18] ZHANG S, WANG L, ZHAO Z H, et al. Two-dimensional electromechanical-coupling modeling for out-of-plane bending vibration of cross- type beams [J]. International Journal of Mechanical Sciences, 2024, 274: 109273.

    [19] [19] HARIRI H H, SOH G S, FOONG S, et al. Locomotion study of a standing wave driven piezoelectric miniature robot for bi-directional motion [J]. IEEE Transactions on Robotics, 2017, 33(3): 742-747.

    [20] [20] PENG H M, YANG J Z, LU X L, et al. A lightweight surface milli-walker based on piezoelectric actuation [J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7852-7860.

    [21] [21] CHEN Y F, DOSHI N, GOLDBERG B, et al. Control-lable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot [J]. Nature Communications, 2018, 9: 2495.

    [22] [22] CHIANG E T K, URAKUBO T, MASHIMO T. Lift generation by a miniature piezoelectric ultrasonic motor-driven rotary-wing for pico air vehicles[J]. IEEE Access, 2022, 10: 13210-13218.

    [23] [23] SUZUKI H, WOOD R J. Origami-inspired miniature manipulator for teleoperated microsurgery[J]. Nature Machine Intelligence, 2020, 2(8): 437-446.

    [24] [24] JAYARAM K, SHUM J, CASTELLANOS S, et al. Scaling down an insect-size microrobot, HAMR-VI into HAMR-jr[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation(ICRA), May 31-August 31, 2020, Paris, France. New York: IEEE Xplore, 2020: 10305-10311.

    [25] [25] BAISCH A T, OZCAN O, GOLDBERG B, et al. High speed locomotion for a quadrupedal microrobot[J]. The International Journal of Robotics Research, 2014, 33(8): 1063-1082.

    Tools

    Get Citation

    Copy Citation Text

    WANG Le, WANG Xin, FEI Senjie, YAN Qiufeng. A miniature amphibious crawling robot driven by piezoelectric actuator[J]. Journal of Nantong University (Natural Science Edition), 2025, 24(2): 64

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 29, 2024

    Accepted: Aug. 25, 2025

    Published Online: Aug. 25, 2025

    The Author Email: YAN Qiufeng (yanqf@nuaa.edu.cn)

    DOI:10.12194/j.ntu.20241229001

    Topics