Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1012002(2024)

Defect Detection of Printed Matter Based on Improved YOLOv5l

Haiwen Liu1、*, Yuanlin Zheng1、**, Chongjun Zhong2, Kaiyang Liao1, Bangyong Sun1, Hanxiang Zhao1, Jie Lin1, Haoqiang Wang1, Shanxiang Han1, and Bo Xie2
Author Affiliations
  • 1College of Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710054, Shaanxi , China
  • 2Weinan Daily Printing Factory, Weinan 714099, Shaanxi , China
  • show less
    References(23)

    [1] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [2] Liu W, Anguelov D, Erhan D, Leibe B, Matas J, Sebe N et al. SSD: single shot MultiBox detector[M]. Computer vision-ECCV 2016, 9905, 21-37(2016).

    [3] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).

    [4] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C], 6517-6525(2017).

    [6] Lin J P, Haberstroh F, Karsch S et al. Applications of object detection networks in high-power laser systems and experiments[J]. High Power Laser Science and Engineering, 11, e7(2023).

    [7] Shen L Y, Lang B H, Song Z X. CA-YOLO: model optimization for remote sensing image object detection[J]. IEEE Access, 11, 64769-64781(2023).

    [8] Khan S A, Lee H J, Lim H. Enhancing object detection in self-driving cars using a hybrid approach[J]. Electronics, 12, 2768(2023).

    [9] Ou J H, Wang J G, Xue J et al. Infrared image target detection of substation electrical equipment using an improved Faster R-CNN[J]. IEEE Transactions on Power Delivery, 38, 387-396(2023).

    [10] Chen M Q, Yu L J, Zhi C et al. Improved Faster R-CNN for fabric defect detection based on Gabor filter with Genetic Algorithm optimization[J]. Computers in Industry, 134, 103551(2022).

    [11] Zhao C, Shu X, Yan X et al. RDD-YOLO: a modified YOLO for detection of steel surface defects[J]. Measurement, 214, 112776(2023).

    [12] Tian R S, Jia M P. DCC-CenterNet: a rapid detection method for steel surface defects[J]. Measurement, 187, 110211(2022).

    [13] Sun L S, Wei J X, Zhu D M et al. Surface defect detection algorithm of aluminum profile based on AM-YOLOv3 model[J]. Laser & Optoelectronics Progress, 58, 2415007(2021).

    [14] Sun Y Z, Gao J W. Wheel tread defect detection based on improved YOLOv5[J]. Laser & Optoelectronics Progress, 59, 2215003(2022).

    [15] Wang Y X, Chen B. Printing defect detection method based on depth contrast network[J]. Journal of Computer Applications, 43, 250-258(2023).

    [16] Wang H T, Gao Y D, Hou J X et al. A method of printing defect detection based on DCGAN[J]. Journal of Harbin University of Science and Technology, 26, 24-32(2021).

    [17] Lou H J, Zheng Y L, Liao K Y et al. Defect target detection for printed matter based on Siamese-YOLOv4[J]. Journal of Computer Applications, 41, 3206-3212(2021).

    [18] Lou H J. Research on detection method of small defects in printed matter based on small sample learning[D](2022).

    [19] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).

    [20] Liu S, Qi L, Qin H F et al. Path aggregation network for instance segmentation[C], 8759-8768(2018).

    [22] Han K, Wang Y H, Tian Q et al. GhostNet: more features from cheap operations[C], 1577-1586(2020).

    [23] Wang B W, Huang F. A lightweight deep network for defect detection of insert molding based on X-ray imaging[J]. Sensors, 21, 5612(2021).

    Tools

    Get Citation

    Copy Citation Text

    Haiwen Liu, Yuanlin Zheng, Chongjun Zhong, Kaiyang Liao, Bangyong Sun, Hanxiang Zhao, Jie Lin, Haoqiang Wang, Shanxiang Han, Bo Xie. Defect Detection of Printed Matter Based on Improved YOLOv5l[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1012002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jul. 31, 2023

    Accepted: Oct. 9, 2023

    Published Online: Apr. 29, 2024

    The Author Email: Haiwen Liu (2418700609@qq.com), Yuanlin Zheng (zhengyuanlin@xaut.edu.cn)

    DOI:10.3788/LOP231826

    CSTR:32186.14.LOP231826

    Topics