Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1012002(2024)
Defect Detection of Printed Matter Based on Improved YOLOv5l
[1] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[2] Liu W, Anguelov D, Erhan D, Leibe B, Matas J, Sebe N et al. SSD: single shot MultiBox detector[M]. Computer vision-ECCV 2016, 9905, 21-37(2016).
[3] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).
[4] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C], 6517-6525(2017).
[5] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767
[6] Lin J P, Haberstroh F, Karsch S et al. Applications of object detection networks in high-power laser systems and experiments[J]. High Power Laser Science and Engineering, 11, e7(2023).
[7] Shen L Y, Lang B H, Song Z X. CA-YOLO: model optimization for remote sensing image object detection[J]. IEEE Access, 11, 64769-64781(2023).
[8] Khan S A, Lee H J, Lim H. Enhancing object detection in self-driving cars using a hybrid approach[J]. Electronics, 12, 2768(2023).
[9] Ou J H, Wang J G, Xue J et al. Infrared image target detection of substation electrical equipment using an improved Faster R-CNN[J]. IEEE Transactions on Power Delivery, 38, 387-396(2023).
[10] Chen M Q, Yu L J, Zhi C et al. Improved Faster R-CNN for fabric defect detection based on Gabor filter with Genetic Algorithm optimization[J]. Computers in Industry, 134, 103551(2022).
[11] Zhao C, Shu X, Yan X et al. RDD-YOLO: a modified YOLO for detection of steel surface defects[J]. Measurement, 214, 112776(2023).
[12] Tian R S, Jia M P. DCC-CenterNet: a rapid detection method for steel surface defects[J]. Measurement, 187, 110211(2022).
[13] Sun L S, Wei J X, Zhu D M et al. Surface defect detection algorithm of aluminum profile based on AM-YOLOv3 model[J]. Laser & Optoelectronics Progress, 58, 2415007(2021).
[14] Sun Y Z, Gao J W. Wheel tread defect detection based on improved YOLOv5[J]. Laser & Optoelectronics Progress, 59, 2215003(2022).
[15] Wang Y X, Chen B. Printing defect detection method based on depth contrast network[J]. Journal of Computer Applications, 43, 250-258(2023).
[16] Wang H T, Gao Y D, Hou J X et al. A method of printing defect detection based on DCGAN[J]. Journal of Harbin University of Science and Technology, 26, 24-32(2021).
[17] Lou H J, Zheng Y L, Liao K Y et al. Defect target detection for printed matter based on Siamese-YOLOv4[J]. Journal of Computer Applications, 41, 3206-3212(2021).
[18] Lou H J. Research on detection method of small defects in printed matter based on small sample learning[D](2022).
[19] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[20] Liu S, Qi L, Qin H F et al. Path aggregation network for instance segmentation[C], 8759-8768(2018).
[22] Han K, Wang Y H, Tian Q et al. GhostNet: more features from cheap operations[C], 1577-1586(2020).
[23] Wang B W, Huang F. A lightweight deep network for defect detection of insert molding based on X-ray imaging[J]. Sensors, 21, 5612(2021).
Get Citation
Copy Citation Text
Haiwen Liu, Yuanlin Zheng, Chongjun Zhong, Kaiyang Liao, Bangyong Sun, Hanxiang Zhao, Jie Lin, Haoqiang Wang, Shanxiang Han, Bo Xie. Defect Detection of Printed Matter Based on Improved YOLOv5l[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1012002
Category: Instrumentation, Measurement and Metrology
Received: Jul. 31, 2023
Accepted: Oct. 9, 2023
Published Online: Apr. 29, 2024
The Author Email: Haiwen Liu (2418700609@qq.com), Yuanlin Zheng (zhengyuanlin@xaut.edu.cn)
CSTR:32186.14.LOP231826