Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1012002(2024)

Defect Detection of Printed Matter Based on Improved YOLOv5l

Haiwen Liu1、*, Yuanlin Zheng1、**, Chongjun Zhong2, Kaiyang Liao1, Bangyong Sun1, Hanxiang Zhao1, Jie Lin1, Haoqiang Wang1, Shanxiang Han1, and Bo Xie2
Author Affiliations
  • 1College of Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710054, Shaanxi , China
  • 2Weinan Daily Printing Factory, Weinan 714099, Shaanxi , China
  • show less
    Figures & Tables(11)
    Architecture of YOLOv5l network
    Architecture of improved YOLOv5l network
    Omni-dimensional dynamic convolution
    Structure diagram of C3Ghost module
    Types of printing defects. (a) Satellite droplet; (b) spots; (c) missing print; (d) crack
    Loss variation curve
    Comparison of printing defect detection effects between YOLOv5l and improved YOLOv5l. (a) Detection results of YOLOv5l; (b) detection results of improved YOLOv5l
    • Table 1. Experimental environment configuration

      View table

      Table 1. Experimental environment configuration

      CategoryParameterConfiguration
      HardwareVideo storage11 GB
      Memory16 GB
      GPUNVIDIA GeForc RTX 2080 Ti
      CPUIntel(R) Core(TM) i5-4590 CPU@3.30 GHz
      SoftwareOperating systemUnbantu 22.04
      Programming languagePython 3.7
      Graphics card accelerationCUDA 10.1
      Deep learning frameworkPyTorch 1.10.1
    • Table 2. Number of various defects

      View table

      Table 2. Number of various defects

      Types of printing defectsNumber of defects
      Satellite droplet976
      Spots985
      Missing print1041
      Crack998
    • Table 3. Experimental results of different improvement modules

      View table

      Table 3. Experimental results of different improvement modules

      ModelFour detection scalesODConvC3GhostmAP /%Speed /(frame·s-1
      YOLOv5l94.448.1
      Improvement 196.540.8
      Improvement 297.739.1
      Improvement 397.344.1
    • Table 4. Performance comparison of different target detection algorithms

      View table

      Table 4. Performance comparison of different target detection algorithms

      ModelAP(RIOU=0.5)mAP
      Satellite dropletSpotsMissing printCrack
      EfficientDet1889.188.784.379.885.5
      Faster R-CNN1890.393.887.184.288.8
      SSD1882.590.454.063.772.7
      YOLOv31887.290.982.383.285.9
      YOLOv41890.592.187.585.788.9
      Siamese-YOLOv41898.296.592.091.794.6
      YOLOv5l95.999.594.287.994.4
      Proposed model99.499.595.694.797.3
    Tools

    Get Citation

    Copy Citation Text

    Haiwen Liu, Yuanlin Zheng, Chongjun Zhong, Kaiyang Liao, Bangyong Sun, Hanxiang Zhao, Jie Lin, Haoqiang Wang, Shanxiang Han, Bo Xie. Defect Detection of Printed Matter Based on Improved YOLOv5l[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1012002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jul. 31, 2023

    Accepted: Oct. 9, 2023

    Published Online: Apr. 29, 2024

    The Author Email: Haiwen Liu (2418700609@qq.com), Yuanlin Zheng (zhengyuanlin@xaut.edu.cn)

    DOI:10.3788/LOP231826

    CSTR:32186.14.LOP231826

    Topics