Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1400004(2024)
Infrared and Visible Image Fusion: Statistical Analysis, Deep Learning Approaches and Future Prospects
[6] Li L, Wang H M, Li C K. A review of deep learning fusion methods for infrared and visible images[J]. Infrared and Laser Engineering, 51, 20220125(2022).
[18] Zhan L C, Yi Z, Huang L D. Infrared and visible images fusion method based on discrete wavelet transform[J]. Journal of Computers, 28, 57-71(2017).
[20] Chipman L J, Orr T M, Graham L N. Wavelets and image fusion[C], 248-251(2002).
[85] Luo X Q, Gao Y H, Wang A Q et al. IFSepR: a general framework for image fusion based on separate representation learning[J]. IEEE Transactions on Multimedia, 25, 608-623(2021).
[113] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial nets[C], 2672-2680(2014).
[155] Guo R[D]. Research on image fusion quality evaluation(2021).
[160] Zhang X L[D]. Study on some issues of image fusion and performance evaluation(2016).
Get Citation
Copy Citation Text
Yifei Wu, Rui Yang, Lü Qishen, Yuting Tang, Chengmin Zhang, Shuaihui Liu. Infrared and Visible Image Fusion: Statistical Analysis, Deep Learning Approaches and Future Prospects[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1400004
Category: Reviews
Received: Oct. 24, 2023
Accepted: Dec. 25, 2023
Published Online: Jul. 25, 2024
The Author Email: Rui Yang (yangrui@jou.edu.cn)
CSTR:32186.14.LOP232360