Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1400004(2024)

Infrared and Visible Image Fusion: Statistical Analysis, Deep Learning Approaches and Future Prospects

Yifei Wu, Rui Yang*, Lü Qishen, Yuting Tang, Chengmin Zhang, and Shuaihui Liu
Author Affiliations
  • School of Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
  • show less
    References(169)

    [6] Li L, Wang H M, Li C K. A review of deep learning fusion methods for infrared and visible images[J]. Infrared and Laser Engineering, 51, 20220125(2022).

    [18] Zhan L C, Yi Z, Huang L D. Infrared and visible images fusion method based on discrete wavelet transform[J]. Journal of Computers, 28, 57-71(2017).

    [20] Chipman L J, Orr T M, Graham L N. Wavelets and image fusion[C], 248-251(2002).

    [85] Luo X Q, Gao Y H, Wang A Q et al. IFSepR: a general framework for image fusion based on separate representation learning[J]. IEEE Transactions on Multimedia, 25, 608-623(2021).

    [113] Goodfellow I J, Pouget-Abadie J, Mirza M et al. Generative adversarial nets[C], 2672-2680(2014).

    [155] Guo R[D]. Research on image fusion quality evaluation(2021).

    [160] Zhang X L[D]. Study on some issues of image fusion and performance evaluation(2016).

    Tools

    Get Citation

    Copy Citation Text

    Yifei Wu, Rui Yang, Lü Qishen, Yuting Tang, Chengmin Zhang, Shuaihui Liu. Infrared and Visible Image Fusion: Statistical Analysis, Deep Learning Approaches and Future Prospects[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1400004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Oct. 24, 2023

    Accepted: Dec. 25, 2023

    Published Online: Jul. 25, 2024

    The Author Email: Rui Yang (yangrui@jou.edu.cn)

    DOI:10.3788/LOP232360

    CSTR:32186.14.LOP232360

    Topics