Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1400004(2024)

Infrared and Visible Image Fusion: Statistical Analysis, Deep Learning Approaches and Future Prospects

Yifei Wu, Rui Yang*, Lü Qishen, Yuting Tang, Chengmin Zhang, and Shuaihui Liu
Author Affiliations
  • School of Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
  • show less
    Figures & Tables(15)
    Scope retrieval
    Accurate retrieval
    Statistics of deep learning-based IVIF papers
    Monthly average changes of deep learning-based
    Architectures of AE-based IVIF methods
    CNN based IVIF framework
    GAN based IVIF framework
    Transformer-based IVIF framework
    • Table 1. Literature retrieval and statistics for IVIF

      View table

      Table 1. Literature retrieval and statistics for IVIF

      CategoryScienceDirectIEEE XploreSpringerLink
      Scope retrievalWith these termsIn all metadataWith all of the words
      113839277337
      Accurate retrievalTitleTitleTitle
      20030849
    • Table 2. Some traditional IVIF methods

      View table

      Table 2. Some traditional IVIF methods

      CategoryTypical method
      Multi-scale transformPyramid transformLaplacian pyramid(LP)8-10
      Contrast pyramid(CP)11-14
      Steerable pyramid15-17
      Wavelet transformDiscrete wavelet transform(DWT)18-21
      Dual-tree discrete wavelet transform(DT-DWT)22-24
      Lifting wavelet transform(LWT)25-27
      Multi-scale geometric analysisNonsubsampled contourlet transform(NSCT)28-31
      Nonsubsampled shearlet transform(NSST)32-35
      Edge-preserving filterBilateral filter36-39
      Guided filter40-43
      Sparse representationFixed-basis methods45-49
      Learning-based methods50-52
      SubspacePrincipal component analysis53-56
      Independent component analysis57-59
      Non-negative matrix factorization60-62
      SaliencyWeight calculation63-65
      Significant target extraction66-68
    • Table 3. AE-based IVIF methods

      View table

      Table 3. AE-based IVIF methods

      Name/AuthorYearSupervisedCodeSourceName/AuthorYearSupervisedCodeSource
      DenseFuse702019TensorflowIEEE TIPAUIF802022PyTorchIEEE TCSVT
      NestFuse712020PyTorchIEEE TIMRes2Fusion812022PyTorchIEEE TIM
      DIDFuse722020PyTorchIJCAIHKDnet822022PyTorchIEEE TIM
      SEDRFuse732021TensorflowIEEE TIMMSFNet832022PyTorchNC
      SFA-Fuse742021YesInf.FusCLF-Net842022PyTorchIEEE TIM
      CSF752021TensorflowIEEE TCIIFSepR852023YesTensorflowIEEE TMM
      DRF762021TensorflowIEEE TIMAEFusion862023ASC
      RFN-Nest772021PyTorchInf.FusDIVFuison872023TensorflowInf.Fus
      UNFusion782022PyTorchIEEE TCSVTCCAFuison882023IEEE TCSVT
      CUFD792022TensorflowCVIUSOSMaskFuse892023PyTorchIEEE TITS
    • Table 4. CNN-based IVIF methods

      View table

      Table 4. CNN-based IVIF methods

      Name/AuthorYearSupervisedCodeSourceName/AuthorYearSupervisedCodeSource
      Liu et al.902018IJWMIPDDNSA952022PyTorchIEEE TMM
      ResNet1012019MatlabIPTIPLF982022YesPyTorchIEEE Sensors
      DFN1022019YesIVCSeAFusion1002022YesPyTorchInf.Fus
      IFCNN1032020YesPyTorchInf.FusU2Fuison1062022TensorflowIEEE TPAMI
      Li etal.1042020MTAPSTLFusion1072022TensorflowPR
      An etal.962020YesOptikLu etal.1082022DSP
      RXDNFuse912021Inf.FusStyleFuse1092022SPIC
      STDFusionNet992021YesTensorflowIEEE TIMMUFusion1102023Inf.Fus
      MMF1052021IPTSGFusion1112023Inf.Fus
      PIAFusion942022PyTorchInf.FusFusionGRAM1122023IEEE TIM
    • Table 5. GAN-based IVIF methods

      View table

      Table 5. GAN-based IVIF methods

      Name/AuthorYearSupervisedCodeSourceName/AuthorYearSupervisedCodeSource
      FusionGAN1142019TensorflowInf.FusMFEIF1282022PyTorchIEEE TCSVT
      DDcGAN1202020TensorflowIJCAIUIFGAN1182022Inf.Fus
      D2WGAN1262020Inf.SciGIDGAN1292022Inf.Fus
      Detail-GAN1152020PyTorchInf.FusTarDAL1302022YesPyTorchIEEE CVPR
      Zhao et al.1252020MPEICAFusion1222022PyTorchIEEE TMM
      MgAN-Fuse1272021PyTorchIEEE TIMDCDR-GAN1312023IEEE TCSVT
      GANMcC1162021TensorflowIEEE TIMCrossFuse1322023PyTorchIEEE TCSVT
      Perception-GAN1172021Inf.FusTang et al.1332023PyTorchIEEE TIM
      AttentionFGAN1212021IEEE TMMAT-GAN1192023Inf.Fus
      Song et al.1242022NCSDDGAN1232023YesTensorflowIEEE TMM
    • Table 6. Transformer based IVIF methods

      View table

      Table 6. Transformer based IVIF methods

      Name/AuthorYearSupervisedCodeSourceName/AuthorYearSupervisedCodeSource
      DNDT1342021IEEE ICITBEDGLT-Fusion1482023IPT
      Park et al.1402022IEEE ICIPTCCFusion1362023PR
      SwinFusion1412022PyTorchIEEE JASTHFuse1492023NC
      CGTF1422022IEEE TIMMRANet1502023IEEE LSP
      YDTR1352022PyTorchIEEE TMMDATFuse1372023PyTorchIEEE TCSVT
      SwinFuse1432022PyTorchIEEE TIMAFT1382023IEEE TIP
      MFST1442022RSSSTFusion1512023YesIEEE Sensors
      IFT1452022IEEE ICIPTCGAN1522023PyTorchIEEE TMM
      TCPMFNet1462022IPTTGFuse1532023PyTorchIEEE TIP
      Kim et al.1472023CVIULapH1392023IEEE TCSVT
    • Table 7. Objective evaluation metrics

      View table

      Table 7. Objective evaluation metrics

      CategoryNameMeaning↑∕↓FormulaExplanation
      Information theoryEntropyEN154,measures the amount of information or information complexity of an image in terms of its gray levelsEN=-l=0L-1pllog2pl

      L is the number of grayscale levels.

      Pl is the normalized histogram of corresponding grayscale levels in the fused image

      Cross entropyCE155,evaluates the difference between the fused image and the source imageCE=CEA,F+CEB,F2CEA,F,and CEB,F are the cross-entropy between images A and B and the fused image F
      CEX,F=i=0255hXilog2hXihFihXi is the normalized histogram of image X
      Mutual informationMI156,quantifies the information consistency between the fused image and the source imageMI=MIA,F+MIB,F

      MIA,F and MIB,F respectively represent the amount of information transferred from image A and image B to the fused image F

      pXx and pFf respectively represent the edge histograms of the source image X and the fused image F.pX,Fx,f is their joint histogram

      MIX,F=x,fnpX,Fx,flog10pX,Fx,fpXxpFf
      Feature mutual informationFMI157,focuses on the similarity of image features and information sharingFMI=MIA˙,F˙+MIB˙,F˙A·B· and F· respectively represent the feature maps of images AB,and the fused image F
      Normalized mutual informationNMI158,quantifies the degree of information sharing between the fused image and the source imageNMI=2MIA,FHA+HF+MIB,FHB+HFMIA,F and MIB,F represent the amount of information transferred from images A and B to the fused image F. HX represents the entropy of image X

      Peak

      signal-to-noise ratio

      PSNR159,measures the degree of distortion between the fused image and the source imagePSNR=10log10r2MSEr represents the peak value of the fused image

      MSE=MSEA,F+MSEB,F2

      MSEX,F=1MNi=0M-1j=0N-1Xi,j-Fi,j2

      MSEA,F and MSEB,F represent the mean squared error between the fused image F and images AB

      Image

      feature

      Average gradientAG160,measures the edge information and image structure of the fused imageAG=1MNi=1Mj=1NFx2i,j+Fy2i,j2Fxi,j=Fi,j-Fi+1,j Fyi,j=Fi,j-Fi,j+1
      Edge intensityEI,evaluates the degree of edge information preservationEI=Sx2+Sy2

      Sx=F*hx

      Sy=F*hy

      hx=-101-202-101

      hy=-1-2-1000121

      Standard deviation

      SD161,measures

      the variation or discreteness of pixel values in the image

      SD=i=1Mj=1NFi,j-μ2

      Fi,j represents the value of each pixel point.

      μ represents the pixel average value of the fused image

      Spatial frequencySF162,measures the preservation degree of high-frequency and low-frequency information in the fused imageSF=RF2+CF2

       RF=i=1Mj=1NFi,j-Fi,j-12

       CF=i=1Mj=1NFi,j-Fi-1,j2

      Edge based similarity measurement

      QABF163,computes

      the amount

      of edge information transferred from the source image to the fused image

      QABF=i=1Nj=1MQAFi,jwAi,j+QBFi,jwBi,ji=1Nj=1MwAi,j+wBi,j

       QXFi,j=QgXFi,jQaXFi,j.

      QgXFi,j and QaXFi,j are respectively the edge strength and

      orientation-preserving

      values at i,j.

      wA and wB is the importance weight of the source image

      Image

      structure

      Structural similarity index measureSSIM164,reflects the degree of structural similarity between imagesSSIMX,F=x,fn2μxμf+C1μx2+μf2+C12σxσf+C2σx2+σf2+C2σxf+C3σxσf+C3

      x and ƒ respectively represent image blocks of the source image and the fused image in the sliding window

      μx and μf is the pixel average value.

      σx and σf is the standard deviation.σxf is the covariance between the source image and the fused image.

      C1C2C3 is the parameter of the stable algorithm.

      SSIM is the overall structural similarity index

      SSIM=SSIMA,F+SSIMB,F

      Yang’s

      metric

      QY165,calculates the amount of preserved structural informationQY=λwSSIMA,Fw+1-λwSSIMB,Fw,    SSIMA,Bw0.75,maxSSIMA,Fw,SSIMB,Fw,  SSIMA,Bw<0.75ω represents the local window λw=sAwsAw+sBw
      Visual perceptionChen-Blum metricQCB166,measures the similarity of primary visual features of human visionQCB=1MNi=1Nj=1MβAi,jWA,Fi,j+βBi,jWB,Fi,j

      WA,Fi,j and WB,Fi,j are the contrasts transferred from source images AandB to the fused image F.

      βA and βB is their saliency map

      Visual information fidelity for fusionVIFF167,evaluates the fidelity of visual information fusionVIFF=k=1Npi×VIFFkZ,K,HFVINDandFVID respectively represent non-distorted visual information similarity and distorted visual information similarity. pi is the weighted coefficient of the i-th sub-band
      VIFFkZ,K,H=bnFVIDk,bZ,K,HbnFVINDk,bZ,K,H
      CorrelationCorrelation coefficientCC1,measures the degree of linear correlation between the fused image and the source imageCC=rAF+rBF2

      X¯ represents the mean of the source image X.

      Fi,j represents the value of

      each pixel point.

      μ represents the pixel average value of the fused image F

      rXF=i=1Mj=1NXi,j-X¯Fi,j-μi=1Mj=1NXi,j-X¯2i=1Mj=1NFi,j-μ2
      Nonlinear correlation coefficientNCC168,measures the degree of nonlinear correlation between the fused image and the source imageNCC=NCCAF+NCCBF2

      Si is the quantity of samples in the i-th rank of the distribution

      b represents the total number of ranks. S represents the total number of sample pairs

      NCCXF=2+i=1b2SiSlogbSiS
    Tools

    Get Citation

    Copy Citation Text

    Yifei Wu, Rui Yang, Lü Qishen, Yuting Tang, Chengmin Zhang, Shuaihui Liu. Infrared and Visible Image Fusion: Statistical Analysis, Deep Learning Approaches and Future Prospects[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1400004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Oct. 24, 2023

    Accepted: Dec. 25, 2023

    Published Online: Jul. 25, 2024

    The Author Email: Rui Yang (yangrui@jou.edu.cn)

    DOI:10.3788/LOP232360

    CSTR:32186.14.LOP232360

    Topics