Infrared and Laser Engineering, Volume. 51, Issue 10, 20220053(2022)
PbS quantum dot P-N homojunction photodetector
[1] Molaei M, Karimipour M, Abbasi S, et al. PbS and PbS/CdS quantum dots: Synthesized by photochemical approach, structural, linear and nonlinear response properties, and optical limiting[J]. Journal of Materials Research, 35, 401-409(2020).
[2] Zhu X, Ge Y, Li J, et al. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 13, 62-74(2020).
[3] Yin X, Zhan C, Guo Y, et al. PbS QD-based photodetectors: future-oriented near-infrared detection technology[J]. Journal of Materials Chemistry C, 9, 417-438(2021).
[4] Ye Y, Yu J, Lin S, et al. Progress of quantum dot backlight technology[J]. Chinese Optics, 13, 14-27(2020).
[5] Manis-Levy H, Shikler R, Golan Y, et al. High photoconductive gain in a GaAs/Pbs heterojunction based SWIR detector[J]. Applied Physics Letters, 117, 081107(2020).
[6] Geng R, Zhao K, Chen Q. Long-distance recognition of infrared quantum dot materials[J]. Infrared and Laser Engineering, 50, 20200436(2021).
[7] Yin C, Zhou J, Liu Y, et al. Research progress of surface acoustic wave ultraviolet detectors[J]. Optics and Precision Engineering, 28, 1433-1445(2020).
[8] Yu X, Zhao J. Research progress of pixel-level integrated devices for spectral imaging[J]. Optics and Precision Engineering, 27, 999-1012(2019).
[9] Zhang C, Mu T, Yan T, et al. Overview of hyperspectral remote sensing technology[J]. Spacecraft Recovery & Remote Sensing, 39, 104-114(2018).
[10] Fu D, Man Y, Li Y, et al. The opportunities and challenges in optical payload of micro-nano satellite[J]. Spacecraft Recovery & Remote Sensing, 39, 64-69(2018).
[11] Yu G, Jin L, Zhou F, et al. A review on development of segmented planar imaging detector for electro-optical reconnaissance system[J]. Spacecraft Recovery & Remote Sensing, 39, 1-9(2018).
[12] Yu L, Tang L, Yang W, et al. Research progress of uncooled infrared detectors[J]. Infrared and Laser Engineering, 50, 20211013(2021).
[13] Nikitskiy I, Goossens S, Kufer D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor[J]. Nature Communications, 7, 1-8(2016).
[14] Pal B N, Robel I, Mohite A, et al. High-sensitivity p-n junction photodiodes based on PbS nanocrystal quantum dots[J]. Advanced Functional Materials, 22, 1741-1748(2012).
[15] Dong R, Bi C, Dong Q, et al. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain[J]. Advanced Optical Materials, 2, 549-554(2014).
[16] Wei Y, Ren Z, Zhang A, et al. Hybrid organic/PbS quantum dot bilayer photodetector with low dark current and high detectivity[J]. Advanced Functional Materials, 28, 1706690(2018).
[17] Xu K, Xiao X, Zhou W, et al. Inverted Si: PbS colloidal quantum dots heterojunction based infrared photodetector[J]. ACS Applied Materials & Interfaces, 12, 15414-15421(2020).
[18] Brichkin S B, Gak V Y, Spirin M G, et al. Study of electrophotophysical characteristics of IR photodetectors based on PbS colloidal quantum dots[J]. High Energy Chemistry, 54, 36-45(2020).
[19] Xiao X, Xu K, Yin M, et al. High quality silicon: colloidal quantum dot heterojunction based infrared photodetector[J]. Applied Physics Letters, 116, 101102(2020).
[20] Wang X, Xu K, Yan X, et al. Amorphous ZnO/PbS quantum dots heterojunction for efficient responsivity broadband photodetectors[J]. ACS Applied Materials & Interfaces, 12, 8403-8410(2020).
Get Citation
Copy Citation Text
Yunfei Xu, Zining Liu, Peng Wang. PbS quantum dot P-N homojunction photodetector[J]. Infrared and Laser Engineering, 2022, 51(10): 20220053
Category: Optical devices
Received: Feb. 20, 2022
Accepted: --
Published Online: Jan. 6, 2023
The Author Email: