Infrared and Laser Engineering, Volume. 51, Issue 7, 20220277(2022)
Research progress on local field characterization of mercury cadmium telluride infrared photodetectors (invited)
[1] Rogalski A. HgCdTe infrared detector material: History, status and outlook[J]. Reports on Progress in Physics, 68, 2267-2336(2005).
[2] Yakovkin I N, Petrova N V. Band inversion and absence of surface states in IV – VI semiconductors[J]. Physics Letters A, 403, 127398(2021).
[3] Hu W D, Li Q, Chen X S, et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 68, 120701(2019).
[4] Ye Z H, Li H H, Wang J D, et al. Recent hotspots and innovative trends of infrared photon detectors[J]. Journal of Infrared and Millimeter Waves, 41, 15-39(2022).
[5] Hu W D, Ye Z H, Liao L, et al. 128×128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk[J]. Optics Letters, 39, 5184-5187(2014).
[6] Chen J, Chen J, Li X, et al. High-performance HgCdTe avalanche photodetector enabled with suppression of band-to-band tunneling effect in mid-wavelength infrared[J]. NPJ Quantum Materials, 6, 1-7(2021).
[7] Fadeev M A, Troshkin A O, Dubinov A A, et al. Mid-infrared stimulated emission in HgCdTe/CdHgTe quantum well heterostructures at room temperature[J]. Optical Engineering, 60, 082006(2020).
[8] Hackiewicz K, Kopytko M, Gawron W. MOCVD-grown HgCdTe photodiodes optimized for HOT conditions and a wide IR range[J]. Sensors and Actuators A: Physical, 309, 112008(2020).
[9] He J L, Wang P, Li Q, et al. Enhanced performance of HgCdTe long-wavelength infrared photodetectors with nBn design[J]. IEEE Transactions on Electron Devices, 67, 2001-2007(2020).
[10] Ismayilov N J, Rajabli A A. Large area Cd
[11] Lei W. A review on the development of GaSb alternative substrates for the epitaxial growth of HgCdTe[J]. Journal of Nanoscience and Nanotechnology, 18, 7349-7354(2018).
[12] Martyniuk P, Rogalski A, Krishna S. Interband quantum cascade infrared photodetectors: Current status and future trends[J]. Physical Review Applied, 17, 027001(2022).
[13] Mynbaev K D, Bazhenov N L, Dvoretsky S A, et al. Photo-luminescence of molecular beam epitaxy-grown mercury cadmium telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si technologies[J]. Journal of Electronic Materials, 47, 4731-4736(2018).
[14] Nordin L, Muhowski A J, Wasserman D. High operating temperature plasmonic infrared detectors[J]. Applied Physics Letters, 120, 101103(2022).
[15] Qiu X F, Zhang S X, Zhang J, et al. Microstructure and optical characterization of mid-wave HgCdTe grown by MBE under different conditions[J]. Crystals, 11, 296(2021).
[16] Vallone M, Goano M, Tibaldi A, et al. Quantum efficiency and crosstalk in subwavelength HgCdTe dual band infrared detectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-9(2022).
[17] Vallone M, Tibaldi A, Hanna S, et al. Plasmon-enhanced light absorption in mid-wavelength infrared HgCdTe detectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-10(2022).
[18] Voitsekhovskii A V, Nesmelov S N, Dzyadukh S M, et al. An experimental study of the dynamic resistance in surface leakage limited nBn structures based on HgCdTe grown by molecular beam epitaxy[J]. Journal of Electronic Materials, 50, 4599-4605(2021).
[19] Guo J X, Xie R Z, Wang P, et al. Infrared photodetectors for multidimensional optical information acquisition[J]. Journal of Infrared and Millimeter Waves, 41, 40-60(2022).
[20] Xie R Z, Li Q, Wang P, et al. Spatial description theory of narrow-band single-carrier avalanche photodetectors[J]. Optics Express, 29, 16432-16446(2021).
[21] You C, Deng W, Liu M, et al. Design and performance study of hybrid Graphene/HgCdTe mid-infrared photodetector[J]. IEEE Sensors Journal, 21, 26708-26715(2021).
[22] Zhang W T, Ye W C, Chen X, et al. Study of the spectral response for HgCdTe long-wavelength detectors with applied stress[J]. Optical and Quantum Electronics, 54, 1-12(2022).
[23] Zhang W K, Lin J M, Chen H L, et al. Analysis injection area-dark current characteristics for mid-wavelength HgCdTe photodiodes[J]. Infrared Physics & Technology, 93, 70-76(2018).
[24] Zholudev M S, Rumyantsev V V, Morozov S V. Calculation of discrete and resonant states of Coulomb acceptor in HgCdTe alloys[J]. Semiconductor Science and Technology, 37, 025003(2021).
[25] Zholudev M S, Rumyantsev V V, Morozov S V. Calculation of the temperature dependence of the Coulomb-Acceptor state energy in a narrow-gap HgCdTe solid solution[J]. Semiconductors, 55, 907-913(2022).
[26] Zhu L Q, Guo H J, Deng Z, et al. Temperature-dependent characteristics of HgCdTe mid-wave infrared e-avalanche photodiode[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-9(2022).
[27] Li Q, Xie R, Wang F, et al. SRH suppressed P-G-I design for very long-wavelength infrared HgCdTe photodiodes[J]. Optics Express, 30, 16509-16517(2022).
[28] Haynes J R, Shockley W. Investigation of hole injection in transistor action[J]. Physical Review, 75, 691-691(1949).
[29] Van Roosbroeck W. Injected current carrier transport in a semi-infinite semiconductor and the determination of lifetimes and surface recombination velocities[J]. Journal of Applied Physics, 26, 380-391(1955).
[30] Marek J. Light-beam-induced current characterization of grain boundaries[J]. Journal of Applied Physics, 55, 318-326(1984).
[31] Raynaud C, Nguyen D-M, Dheilly N, et al. Optical beam induced current measurements: Principles and applications to SiC device characterization[J]. Physica Status Solidi A:Applied Research, 206, 2273-2283(2009).
[32] Li Q, He T, Zhang K, et al. Direct mapping and characterization of the surface local field in InGaAs/InP avalanche photodetectors[J]. Infrared Physics & Technology, 123, 104162(2022).
[33] Graham R, Yu D. Scanning photocurrent microscopy in semiconductor nanostructures[J]. Modern Physics Letters B, 27, 1330018(2013).
[34] Baugher B W, Churchill H O, Yang Y, et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide[J]. Nature Nanotechnology, 9, 262-267(2014).
[35] Qiu W C, Cheng X A, Wang R, et al. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe[J]. Journal of Applied Physics, 115, 204506(2014).
[36] Musca C A, Redfern D A, Smith E P G, et al. Junction depth measurement in HgCdTe using laser beam induced current (LBIC)[J]. Journal of Electronic Materials, 28, 603-610(1999).
[37] Hu W D, Chen X S, Ye Z H, et al. Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1-7(2013).
[38] Hu W D, Chen X S, Ye Z H, et al. Polarity inversion and coupling of laser beam induced current in As-doped long-wavelength HgCdTe infrared detector pixel arrays: Experiment and simulation[J]. Applied Physics Letters, 101, 181108(2012).
[39] Qiu W C, Hu W D, Lin T, et al. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope[J]. Applied Physics Letters, 105, 191106(2014).
[40] Gumenjuk-Sichevskaja J V, Sizov F F, Ovsyuk V N, et al. Charge transport in HgCdTe-based n+-p photodiodes[J]. Semiconductors, 35, 800-806(2001).
[41] Polla D L, Reine M B, Jones C E. Deep level studies of Hg1
[42] Jones C E, James K, Merz J, et al. Status of point defects in HgCdTe[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 3, 131-137(1985).
[43] Turinov V I. A study of deep levels in CdHgTe by analyzing the tunneling current of photodiodes[J]. Semiconductors, 38, 1092-1098(2004).
[44] Dawar A L, Roy S, Mall R P, et al. Effect of laser irradiation on structural, electrical, and optical properties of p-mercury cadmium telluride[J]. Journal of Applied Physics, 70, 3516-3520(1991).
[45] Dawar A L, Roy S, Nath T, et al. Effect of laser annealing on electrical and optical properties of n-mercury cadmium telluride[J]. Journal of Applied Physics, 69, 3849-3852(1991).
[46] Zha F X, Li M S, Shao J, et al. Femtosecond laser-drilling-induced HgCdTe photodiodes[J]. Optics Letters, 35, 971-973(2010).
[47] Zha F X, Zhou S M, Ma H L, et al. Laser drilling induced electrical type inversion in vacancy-doped p-type HgCdTe[J]. Applied Physics Letters, 93, 151113(2008).
[48] Qiu W C, Hu W D. Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors[J]. Science China Physics, Mechanics & Astronomy, 58, 1-13(2015).
[49] Smith E P, Gleason J K, Pham L T, et al. Inductively coupled plasma etching of HgCdTe[J]. Journal of Electronic Materials, 32, 816-820(2003).
[50] Stoltz A J, Benson J D, Boyd P R, et al. The effect of electron cyclotron resonance plasma parameters on the aspect ratio of trenches in HgCdTe[J]. Journal of Electronic Materials, 32, 692-697(2003).
[51] Zhong F, Wang H, Wang Z, et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies[J]. Nano Research, 14, 1840-1862(2020).
[52] He T, Wang Z, Zhong F, et al. Etching techniques in 2D materials[J]. Advanced Materials Technologies, 4, 1900064(2019).
[53] Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 54, 136-154(2011).
[54] Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 105, 091101(2009).
[55] Li Y T, Hu W D, Ye Z H, et al. Direct mapping and characterization of dry etch damage-induced PN junction for long-wavelength HgCdTe infrared detector arrays[J]. Optics Letters, 42, 1325-1328(2017).
[56] Li Q, Wang F, Wang P, et al. Enhanced performance of HgCdTe midwavelength infrared electron avalanche photodetectors with guard ring designs[J]. IEEE Transactions on Electron Devices, 67, 542-546(2020).
[57] He J L, Li Q, Wang P, et al. Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode[J]. Optics Express, 28, 33556-33563(2020).
[58] Singh A, Shukla A K, Pal R. Performance of graded bandgap HgCdTe avalanche photodiode[J]. IEEE Transactions on Electron Devices, 64, 1146-1152(2017).
[59] Lee D, Carmody M, Piquette E, et al. High-operating temperature HgCdTe: A vision for the near future[J]. Journal of Electronic Materials, 45, 4587-4595(2016).
[60] Ge H N, Xie R Z, Chen Y F, et al. Skin effect photon-trapping enhancement in infrared photodiodes[J]. Optics Express, 29, 22823-22837(2021).
Get Citation
Copy Citation Text
Shuning Liu, Qianying Tang, Qing Li. Research progress on local field characterization of mercury cadmium telluride infrared photodetectors (invited)[J]. Infrared and Laser Engineering, 2022, 51(7): 20220277
Category:
Received: Apr. 23, 2022
Accepted: --
Published Online: Dec. 20, 2022
The Author Email: