Infrared and Laser Engineering, Volume. 51, Issue 7, 20220277(2022)

Research progress on local field characterization of mercury cadmium telluride infrared photodetectors (invited)

Shuning Liu1,2, Qianying Tang1, and Qing Li1,2
Author Affiliations
  • 1Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 2Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    References(60)

    [1] Rogalski A. HgCdTe infrared detector material: History, status and outlook[J]. Reports on Progress in Physics, 68, 2267-2336(2005).

    [2] Yakovkin I N, Petrova N V. Band inversion and absence of surface states in IV – VI semiconductors[J]. Physics Letters A, 403, 127398(2021).

    [3] Hu W D, Li Q, Chen X S, et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 68, 120701(2019).

    [4] Ye Z H, Li H H, Wang J D, et al. Recent hotspots and innovative trends of infrared photon detectors[J]. Journal of Infrared and Millimeter Waves, 41, 15-39(2022).

    [5] Hu W D, Ye Z H, Liao L, et al. 128×128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk[J]. Optics Letters, 39, 5184-5187(2014).

    [6] Chen J, Chen J, Li X, et al. High-performance HgCdTe avalanche photodetector enabled with suppression of band-to-band tunneling effect in mid-wavelength infrared[J]. NPJ Quantum Materials, 6, 1-7(2021).

    [7] Fadeev M A, Troshkin A O, Dubinov A A, et al. Mid-infrared stimulated emission in HgCdTe/CdHgTe quantum well heterostructures at room temperature[J]. Optical Engineering, 60, 082006(2020).

    [8] Hackiewicz K, Kopytko M, Gawron W. MOCVD-grown HgCdTe photodiodes optimized for HOT conditions and a wide IR range[J]. Sensors and Actuators A: Physical, 309, 112008(2020).

    [9] He J L, Wang P, Li Q, et al. Enhanced performance of HgCdTe long-wavelength infrared photodetectors with nBn design[J]. IEEE Transactions on Electron Devices, 67, 2001-2007(2020).

    [10] Ismayilov N J, Rajabli A A. Large area CdxHg1−xTe photodiode with picosecond response time τRC[J]. Low Temperature Physics, 48, 161-164(2022).

    [11] Lei W. A review on the development of GaSb alternative substrates for the epitaxial growth of HgCdTe[J]. Journal of Nanoscience and Nanotechnology, 18, 7349-7354(2018).

    [12] Martyniuk P, Rogalski A, Krishna S. Interband quantum cascade infrared photodetectors: Current status and future trends[J]. Physical Review Applied, 17, 027001(2022).

    [13] Mynbaev K D, Bazhenov N L, Dvoretsky S A, et al. Photo-luminescence of molecular beam epitaxy-grown mercury cadmium telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si technologies[J]. Journal of Electronic Materials, 47, 4731-4736(2018).

    [14] Nordin L, Muhowski A J, Wasserman D. High operating temperature plasmonic infrared detectors[J]. Applied Physics Letters, 120, 101103(2022).

    [15] Qiu X F, Zhang S X, Zhang J, et al. Microstructure and optical characterization of mid-wave HgCdTe grown by MBE under different conditions[J]. Crystals, 11, 296(2021).

    [16] Vallone M, Goano M, Tibaldi A, et al. Quantum efficiency and crosstalk in subwavelength HgCdTe dual band infrared detectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-9(2022).

    [17] Vallone M, Tibaldi A, Hanna S, et al. Plasmon-enhanced light absorption in mid-wavelength infrared HgCdTe detectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-10(2022).

    [18] Voitsekhovskii A V, Nesmelov S N, Dzyadukh S M, et al. An experimental study of the dynamic resistance in surface leakage limited nBn structures based on HgCdTe grown by molecular beam epitaxy[J]. Journal of Electronic Materials, 50, 4599-4605(2021).

    [19] Guo J X, Xie R Z, Wang P, et al. Infrared photodetectors for multidimensional optical information acquisition[J]. Journal of Infrared and Millimeter Waves, 41, 40-60(2022).

    [20] Xie R Z, Li Q, Wang P, et al. Spatial description theory of narrow-band single-carrier avalanche photodetectors[J]. Optics Express, 29, 16432-16446(2021).

    [21] You C, Deng W, Liu M, et al. Design and performance study of hybrid Graphene/HgCdTe mid-infrared photodetector[J]. IEEE Sensors Journal, 21, 26708-26715(2021).

    [22] Zhang W T, Ye W C, Chen X, et al. Study of the spectral response for HgCdTe long-wavelength detectors with applied stress[J]. Optical and Quantum Electronics, 54, 1-12(2022).

    [23] Zhang W K, Lin J M, Chen H L, et al. Analysis injection area-dark current characteristics for mid-wavelength HgCdTe photodiodes[J]. Infrared Physics & Technology, 93, 70-76(2018).

    [24] Zholudev M S, Rumyantsev V V, Morozov S V. Calculation of discrete and resonant states of Coulomb acceptor in HgCdTe alloys[J]. Semiconductor Science and Technology, 37, 025003(2021).

    [25] Zholudev M S, Rumyantsev V V, Morozov S V. Calculation of the temperature dependence of the Coulomb-Acceptor state energy in a narrow-gap HgCdTe solid solution[J]. Semiconductors, 55, 907-913(2022).

    [26] Zhu L Q, Guo H J, Deng Z, et al. Temperature-dependent characteristics of HgCdTe mid-wave infrared e-avalanche photodiode[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-9(2022).

    [27] Li Q, Xie R, Wang F, et al. SRH suppressed P-G-I design for very long-wavelength infrared HgCdTe photodiodes[J]. Optics Express, 30, 16509-16517(2022).

    [28] Haynes J R, Shockley W. Investigation of hole injection in transistor action[J]. Physical Review, 75, 691-691(1949).

    [29] Van Roosbroeck W. Injected current carrier transport in a semi-infinite semiconductor and the determination of lifetimes and surface recombination velocities[J]. Journal of Applied Physics, 26, 380-391(1955).

    [30] Marek J. Light-beam-induced current characterization of grain boundaries[J]. Journal of Applied Physics, 55, 318-326(1984).

    [31] Raynaud C, Nguyen D-M, Dheilly N, et al. Optical beam induced current measurements: Principles and applications to SiC device characterization[J]. Physica Status Solidi A:Applied Research, 206, 2273-2283(2009).

    [32] Li Q, He T, Zhang K, et al. Direct mapping and characterization of the surface local field in InGaAs/InP avalanche photodetectors[J]. Infrared Physics & Technology, 123, 104162(2022).

    [33] Graham R, Yu D. Scanning photocurrent microscopy in semiconductor nanostructures[J]. Modern Physics Letters B, 27, 1330018(2013).

    [34] Baugher B W, Churchill H O, Yang Y, et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide[J]. Nature Nanotechnology, 9, 262-267(2014).

    [35] Qiu W C, Cheng X A, Wang R, et al. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe[J]. Journal of Applied Physics, 115, 204506(2014).

    [36] Musca C A, Redfern D A, Smith E P G, et al. Junction depth measurement in HgCdTe using laser beam induced current (LBIC)[J]. Journal of Electronic Materials, 28, 603-610(1999).

    [37] Hu W D, Chen X S, Ye Z H, et al. Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1-7(2013).

    [38] Hu W D, Chen X S, Ye Z H, et al. Polarity inversion and coupling of laser beam induced current in As-doped long-wavelength HgCdTe infrared detector pixel arrays: Experiment and simulation[J]. Applied Physics Letters, 101, 181108(2012).

    [39] Qiu W C, Hu W D, Lin T, et al. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope[J]. Applied Physics Letters, 105, 191106(2014).

    [40] Gumenjuk-Sichevskaja J V, Sizov F F, Ovsyuk V N, et al. Charge transport in HgCdTe-based n+-p photodiodes[J]. Semiconductors, 35, 800-806(2001).

    [41] Polla D L, Reine M B, Jones C E. Deep level studies of Hg1−xCdxTe. II: Correlation with photodiode performance[J]. Journal of Applied Physics, 52, 5132-5138(1981).

    [42] Jones C E, James K, Merz J, et al. Status of point defects in HgCdTe[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 3, 131-137(1985).

    [43] Turinov V I. A study of deep levels in CdHgTe by analyzing the tunneling current of photodiodes[J]. Semiconductors, 38, 1092-1098(2004).

    [44] Dawar A L, Roy S, Mall R P, et al. Effect of laser irradiation on structural, electrical, and optical properties of p-mercury cadmium telluride[J]. Journal of Applied Physics, 70, 3516-3520(1991).

    [45] Dawar A L, Roy S, Nath T, et al. Effect of laser annealing on electrical and optical properties of n-mercury cadmium telluride[J]. Journal of Applied Physics, 69, 3849-3852(1991).

    [46] Zha F X, Li M S, Shao J, et al. Femtosecond laser-drilling-induced HgCdTe photodiodes[J]. Optics Letters, 35, 971-973(2010).

    [47] Zha F X, Zhou S M, Ma H L, et al. Laser drilling induced electrical type inversion in vacancy-doped p-type HgCdTe[J]. Applied Physics Letters, 93, 151113(2008).

    [48] Qiu W C, Hu W D. Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors[J]. Science China Physics, Mechanics & Astronomy, 58, 1-13(2015).

    [49] Smith E P, Gleason J K, Pham L T, et al. Inductively coupled plasma etching of HgCdTe[J]. Journal of Electronic Materials, 32, 816-820(2003).

    [50] Stoltz A J, Benson J D, Boyd P R, et al. The effect of electron cyclotron resonance plasma parameters on the aspect ratio of trenches in HgCdTe[J]. Journal of Electronic Materials, 32, 692-697(2003).

    [51] Zhong F, Wang H, Wang Z, et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies[J]. Nano Research, 14, 1840-1862(2020).

    [52] He T, Wang Z, Zhong F, et al. Etching techniques in 2D materials[J]. Advanced Materials Technologies, 4, 1900064(2019).

    [53] Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 54, 136-154(2011).

    [54] Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 105, 091101(2009).

    [55] Li Y T, Hu W D, Ye Z H, et al. Direct mapping and characterization of dry etch damage-induced PN junction for long-wavelength HgCdTe infrared detector arrays[J]. Optics Letters, 42, 1325-1328(2017).

    [56] Li Q, Wang F, Wang P, et al. Enhanced performance of HgCdTe midwavelength infrared electron avalanche photodetectors with guard ring designs[J]. IEEE Transactions on Electron Devices, 67, 542-546(2020).

    [57] He J L, Li Q, Wang P, et al. Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode[J]. Optics Express, 28, 33556-33563(2020).

    [58] Singh A, Shukla A K, Pal R. Performance of graded bandgap HgCdTe avalanche photodiode[J]. IEEE Transactions on Electron Devices, 64, 1146-1152(2017).

    [59] Lee D, Carmody M, Piquette E, et al. High-operating temperature HgCdTe: A vision for the near future[J]. Journal of Electronic Materials, 45, 4587-4595(2016).

    [60] Ge H N, Xie R Z, Chen Y F, et al. Skin effect photon-trapping enhancement in infrared photodiodes[J]. Optics Express, 29, 22823-22837(2021).

    CLP Journals

    [1] Linwei Song, Jincheng Kong, Peng Zhao, Jun Jiang, Xiongjun Li, Dong Fang, Chaowei Yang, Chang Shu. Research of Au-doped LWIR HgCdTe detector[J]. Infrared and Laser Engineering, 2023, 52(4): 20220655

    Tools

    Get Citation

    Copy Citation Text

    Shuning Liu, Qianying Tang, Qing Li. Research progress on local field characterization of mercury cadmium telluride infrared photodetectors (invited)[J]. Infrared and Laser Engineering, 2022, 51(7): 20220277

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 23, 2022

    Accepted: --

    Published Online: Dec. 20, 2022

    The Author Email:

    DOI:10.3788/IRLA20220277

    Topics