Journal of Synthetic Crystals, Volume. 54, Issue 5, 784(2025)
Growth and Performance of Low-Dislocation 6-Inch GaSb Single Crystal
[1] MÜLLER R, GRAMICH V, WAURO M et al. High operating temperature InAs/GaSb type-Ⅱ superlattice detectors on GaAs substrate for the long wavelength infrared. Infrared Physics & Technology, 96, 141-144(2019).
[2] CRAIG A P, LETKA V, CARMICHAEL M et al. InAsSb-based detectors on GaSb for near-room-temperature operation in the mid-wave infrared. Applied Physics Letters, 118, 251103(2021).
[3] NISHIMOTO N, FUJIHARA J, YOSHINO K. Biocompatibility of GaSb thin films grown by RF magnetron sputtering. Applied Surface Science, 409, 375-380(2017).
[4] ZHOU X C, LI D S, HUANG J L et al. Mid-wavelength type Ⅱ InAs/GaSb superlattice infrared focal plane arrays. Infrared Physics & Technology, 78, 263-267(2016).
[5] LOTFI H, LI L, SHAZZAD RASSEL S M et al. Monolithically integrated mid-IR interband cascade laser and photodetector operating at room temperature. Applied Physics Letters, 109, 151111(2016).
[6] DONG W M, JIANG J, PENG Q W et al. Study on the facet effect in LEC-GaSb single crystals. Journal of Crystal Growth, 636, 127706(2024).
[7] LIU J M, YANG J, ZHAO Y W et al. Research progress of GaSb single crystal. Journal of Synthetic Crystals, 53, 1-11(2024).
[8] REIJNEN L, BRUNTON R, GRANT I R. Comparison of LEC-grown and VGF-grown GaSb, 738, 360-367(2004).
[9] ZHAO Y W, DUAN M L, LU W et al. VGF growth and property of 4 inch diameter InP single crystals with low dislocation density. Journal of Synthetic Crystals, 46, 792-796(2017).
[10] YAN B, LIU W H, YU Z J et al. Temperature dynamic compensation vertical Bridgman method growth of high-quality GaSb single crystals. Journal of Crystal Growth, 602, 126988(2023).
[11] SIM B C, JUNG Y H, LEE J E et al. Effect of the crystal-melt interface on the grown-in defects in silicon CZ growth. Journal of Crystal Growth, 299, 152-157(2007).
[12] KLIN O, SNAPI N, COHEN Y et al. A study of MBE growth-related defects in InAs/GaSb type-Ⅱ supperlattices for long wavelength infrared detectors. Journal of Crystal Growth, 425, 54-59(2015).
[13] KOERPERICK E J, MURRAY L M, NORTON D T et al. Optimization of MBE-grown GaSb buffer layers and surface effects of antimony stabilization flux. Journal of Crystal Growth, 312, 185-191(2010).
[14] ZHU Y B, WEN H H, ZHANG H Y et al. Real-time in situ observation of extended defect evolution near a crack tip in GaSb crystal under thermal loading. Applied Surface Science, 515, 145934(2020).
[15] YANG J, DUAN M L, LU W et al. Growth of 4 inch diameter GaSb(100) single crystal with low dislocation density and high quality substrate preparation. Journal of Synthetic Crystals, 46, 820-824(2017).
[16] NOGHABI O A, JOMÂA M, M’HAMDI M. Analysis of W-shape melt/crystal interface formation in Czochralski silicon crystal growth. Journal of Crystal Growth, 362, 77-82(2013).
[17] ZHOU Y, ZHAO Y W, XIE H et al. Residual stress distribution and flatness of dislocation-free Te-GaSb (100) substrate. Japanese Journal of Applied Physics, 60(2021).
[18] BRIGHTUP S, GOORSKY M S. Chemical-mechanical polishing for Ⅲ-Ⅴ wafer bonding applications: polishing, roughness, and an abrasive-free polishing model. ECS Transactions, 33, 383-389(2010).
[20] Inc STR. CGSim theory manual(v).
[21] Inc STR. CGSim flow module theory manual(v).
[22] NGUYEN T H T, CHEN J C, HU C et al. Numerical simulation of heat and mass transfer during Czochralski silicon crystal growth under the application of crystal-crucible counter- and iso-rotations. Journal of Crystal Growth, 507, 50-57(2019).
[23] LI X L, LIU Y L, WANG B et al. Global heat loss and thermal stress analysis in Czochralski crystal growth. Crystal Research and Technology, 49, 376-382(2014).
[24] FENG Y H, SHEN G Y, ZHAO Y W et al. Lattice perfection of dislocation-free (100) Te-GaSb single crystal polished substrate. Journal of Synthetic Crystals, 51, 1003-1011(2022).
[25] SHEN G Y, ZHAO Y W, LIU J M et al. Oxidation related particles on GaSb (100) substrate surfaces. Journal of Crystal Growth, 581, 126499(2022).
[26] GRAY N W, PRAX A, JOHNSON D et al. Rapid development of high-volume manufacturing methods for epi-ready GaSb wafers up to 6″ diameter for IR imaging applications, 9819, 274-284(9819).
[27] MARTINEZ R, TYBJERG M, FLINT P et al. A study of the preparation of epitaxy-ready polished surfaces of (100) gallium antimonide substrates demonstrating ultra-low surface defects for MBE growth, 298-309(2016).
[28] FURLONG M J, MARTINEZ B, TYBJERG M et al. Growth and characterization of ≥6″ epitaxy-ready GaSb substrates for use in large area infrared imaging applications, 182-189(2015).
[29] MARTINEZ R, AMIRHAGHI S, SMITH B et al. Large diameter ‘ultra-flat’ epitaxy ready GaSb substrates: requirements for MBE grown advanced infrared detectors, 8353(2012).
Get Citation
Copy Citation Text
Wenwen YANG, Wei LU, Hui XIE, Gang LIU, Xinyu LYU, Yihan BAI, Chenhui LI, Jiaoqing PAN, Youwen ZHAO, Guiying SHEN. Growth and Performance of Low-Dislocation 6-Inch GaSb Single Crystal[J]. Journal of Synthetic Crystals, 2025, 54(5): 784
Category:
Received: Nov. 6, 2024
Accepted: --
Published Online: Jul. 2, 2025
The Author Email: Guiying SHEN (shenguiying@semi.ac.cn)