Infrared and Laser Engineering, Volume. 50, Issue 8, 20210346(2021)

Research progress of 2 μm ultrashort pulse all solid state thulium doped oscillator (Invited)

Weijun Ling and Wenting Wang
Author Affiliations
  • Institute of Laser Technology, Tianshui Normal University, Tianshui 741001, China
  • show less
    References(70)

    [1] Johnson F L. Optical maser characteristics of rare-earth ions in crystals[J]. Journal of Applied Physics, 34, 897-909(1963).

    [2] Sorokin E, Sorokina I T, Mandon J, et al. Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+: ZnSe femtosecond laser[J]. Optics Express, 15, 16540-16545(2007).

    [3] Mairesse Y, de Bohan A, Frasinski L J, et al. Optimization of attosecond pulse generation[J]. Physical Review Letters, 93, 163901(2004).

    [4] Zhang J, Mak K F, Pronin O. Kerr-lens mode-locked 2 μm thin-disk lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-11(2018).

    [5] Pinto J F, Esterowitz L, Rosenblatt G H. Continuous wave mod-elocked 2 μm Tm: YAG laser[J]. Optics Letters, 17, 731-732(1992).

    [6] Keller U, Miller D A B, Boyd G D, et al. Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: an antiresonant semi- conductor Fabry-Perot saturable absorber[J]. Optics Letter, 17, 505-507(1992).

    [7] Lagatsky A A, Han X, Serrano M D, et al. Femtosecond (191 fs) NaY(WO4)2 Tm, Ho- codoped laser at 2060 nm[J]. Optics Letters, 35, 3027-3029(2010).

    [8] Ma J, Xie G Q, Gao W L, et al. Diode pumped mode-locked femtosecond Tm: CLNGG disordered crystal laser[J]. Optics Letters, 37, 1376-1378(2012).

    [9] Zhou W, Xu X, Xu R, et al. Watt-level broadly wavelength tunable mode locked solid-state laser in the 2 μm water absorption region[J]. Photonics Research, 5, 583-587(2017).

    [10] Wang L, Chen W, Zhao Y, et al. Sub-50 fs pulse generation from a SESAM mode-locked Tm, Ho-codoped calcium aluminate laser[J]. Optics Letters, 46, 2642(2021).

    [11] Luan C, Yang K, Zhao J, et al. Diode-pumped mode locked Tm: LuAG laser at 2 μm based on GaSb SESAM[J]. Optics Letters, 42, 839-842(2017).

    [12] Zhang H L, Huang J Y, Zhou C, et al. 2 μm-band Tm: YAP Crystal semiconductor saturable absorption mirror CW mode-locked laser[J]. Infrared and Laser Engineering, 47, 0505003(2018).

    [13] Zhao Y, Wang Y, Zhang X, et al. 87 fs mode locked Tm, Ho: CaYAIO4 laser at 2043 nm[J]. Optics Letters, 43, 915-918(2018).

    [14] [14] Wang Y, Zhao Y, Loiko P, et al. 52 fs SESAM mode hocked Tm, Ho: CALGO laser[C]Advanced Solid State Lasers, 2019.

    [15] [15] Wang Y C, Zhao Y G, Pan Z B, et al. 73 fs SESAM modelocked Tm, Ho: CNGG laser at 2061 nm[C]Solid State Lasers Technology Devices, 2020.

    [16] Chen W, Mero M, Wang Y, et al. SESAM mode-locked Tm: LuYO3 ceramic laser generating 54-fs pulses at 2048 nm[J]. Applied Optics, 59, 10493(2020).

    [17] Feng T, Yang K, Zhao J, et al. 1.21 W passively mode-locked Tm: LuAG laser[J]. Optics Express, 23, 11819-11824(2015).

    [18] Tyazhev A, Soulard R, Godin T, et al. Passively mode locked diode pumped Tm3+: YLF laser emitting at 1.91 µm using a GaAs-based SESAM[J]. Laser Physics Letters, 15, 045807(2018).

    [19] Gluth A, Wang Y, Petrov V, et al. GaSb based SESAM mode-locked Tm: YAG ceramic laser at 2 µm[J]. Optics Express, 23, 1361-1369(2015).

    [20] Wang Y, Lan R, Mateos X, et al. Thulium doped LuAG ceramics for passively mode locked lasers[J]. Optics Express, 25, 7084-7091(2017).

    [21] Soulard R, Tyazhev A, Doualan J, et al. 2.3 µm Tm3+: YLF mode locked laser[J]. Optics Letters, 42, 3534-3536(2017).

    [22] Wang Y, Xie G, Xu X, et al. SESAM mode locked Tm: CALGO laser at 2 µm[J]. Optieal Materials Express, 6, 131-136(2016).

    [23] Wang Y, Wei J, Loiko P, et al. Sub-10 optical-cycle passively mode-locked Tm: (Lu2/3Sc1/3)2O3 ceramic laser at 2 µm[J]. Optics Express, 26, 10299(2018).

    [24] Cho W B, Schmidt A, Yim J H, et al. Passive mode-locking of a Tm-doped bulk laser near 2 microm using a carbon nanotube saturable absorber[J]. Optics Letters, 17, 11007-11012(2009).

    [25] Qu Z, Wang Y, Liu J, et al. Passively mode locked 2-μm Tm: YAP laser with a double-wall carbon nanotube absorber[J]. Chinese Physics B, 21, 064211(2012).

    [26] Zhao Y G, Li W, Wang Y C, et al. SWCNT-SA mode-locked Tm: LuYO3 ceramic laser delivering 8-optical-cycle pulses at 2 µm[J]. Optics Letters, 45, 459(2020).

    [27] Schmidt A, Rivier S, Steinmeyer G, et al. Passive mode locking of Yb: KLuW using a single walled carbon nanotube saturable absorber[J]. Optics Letters, 33, 729-731(2008).

    [28] Zhao Y G, Wang Y C, Chen W D, et al. 67 fs pulse generate-on from a mode-locked Tm, Ho: CLNGG laser at 2083 nm[J]. Optics Express, 27, 1922(2019).

    [29] Pan Z, Wang Y, Zhao Y, et al. Generation of 84-fs pulses from a mode-locked Tm: CNNGG disordered garnet crystal laser[J]. Photonics Research, 6, 800-804(2018).

    [30] Pan Z, Wang Y, Zhao Y, et al. Sub-80 fs mode locked Tm, Ho codoped disordered garnet crystal oscillator operating at 2081 nm[J]. Optics Letters, 43, 5154-5157(2018).

    [31] Wang Y, Zhao Y, Pan Z, et al. 78 fs SWCNT SA mode- locked Tm: CLNGG disordered garnet erystal laser at 2017 nm[J]. Optics Letters, 43, 4268-4271(2018).

    [32] Breusing M, Ropers C, Elsaesser T, et al. Ultrafast carrier dynamics in graphite[J]. Physical Review Letters, 102, 086809(2009).

    [33] Liu J, Wang Y G, Qu Z S, et al. Graphene oxide absorber for 2 μm passive mode‐locking Tm: YAlO3 laser[J]. Laser Physics Letters, 9, 15-19(2011).

    [34] Sun R, Chen C, Ling W, et al. Watt-level passively Q-switched mode-locked Tm: LuAG laser with graphene oxide saturable absorber[J]. Acta Physica Sinica, 68, 104207(2019).

    [35] Wang Y, Chen W, Mero M, et al. Sub-100 fs Tm: MgWO4, laser at 2017 nm mode locked by a graphene saturable absorber[J]. Optics Letters, 16, 3076-3079(2017).

    [36] Wan H, Cai W, Wang F. et al. et al. High-quality monolayer graphene for bulk laser mode-locking near 2 µm[J]. Optical and Quantum Electronics, 48, 1-8(2016).

    [37] Ma J, Xie G Q, Zhang J, et al. Passively mode-locked Tm: YAG ceramic laser based on graphene[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 160-165(2015).

    [38] Wang K P, Wang J, Fan J T, et al. Ultrafast saturable absorption of two dimensional MoS2, nanosheets[J]. ACS Nano, 7, 9260-9267(2013).

    [39] Xu B, Cheng Y J, Wang Y, et al. Passively Q-switched Nd: YAlO, nanosecond laser using MoS2 as saturable absorber[J]. Optics Express, 22, 28934-28940(2014).

    [40] Li L J, Zhou L, Li T X, et al. Passive mode- locking operation of a diode pumped Tm: YAG laser with a MoS2 saturable absorber[J]. Optics and Laser Technology, 124, 105986(2020).

    [41] Zhang B, Lou F, Zhao R, et al. Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser[J]. Optics Letters, 40, 3691-3694(2015).

    [42] Su X, Wang Y, Zhang B, et al. Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber[J]. Optics Letters, 41, 1945-1948(2016).

    [43] Predan F, Ohlmann J, Mrabet S, et al. Hall characterization of epitaxial GaSb and AlGaAsSb layers using p-n junctions on GaSb substrates[J]. Journal of Crystal Growth, 36-42(20184968).

    [44] Kumar R, Sahoo S, Joanni E, et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives[J]. Nano Research, 12, 2655-2694(2019).

    [45] Kränkel C, Fujita E, Tokurakawa M. Kerr-lens mode-locked Tm3+: Sc2O3 single-crystal laser in-band pumped by an Er: Yb fiber mopa at 1611 nm[J]. Optics Letters, 42, 3185(2017).

    [46] Haus H A, Fujimoto J G, Ippen E P. Analytic theory of additive pulse and Kerr lens mode locking[J]. IEEE Journal of Quantum Electronics, 28, 2086-2096(1992).

    [47] Huang D, Ulman M, Acioli L H, et al. Self-focusing-induced saturable loss for laser mode locking[J]. Optics Letters, 17, 511(1992).

    [48] Senatsky Y, Shirakawa A, Sato Y, et al. Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high‐power laser‐driver[J]. Laser Physics Letters, 1, 500-506(2004).

    [49] Canbaz F, Yorulmaz I, Sennaroglu A. Kerr-lens mode-locked 2.3-μm Tm3+: YLF laser as a source of femtosecond pulses in the mid-infrared[J]. Optics Letters, 42, 3964(2017).

    [50] Wang L, Chen W D, Zhao Y G, et al. Single-walled carbon-nanotube saturable absorber assisted Kerr-lens mode-locked Tm: MgWO4 laser[J]. Optics Letters, 45, 6142-6145(2020).

    [51] Suzuki A, Kränkel C, Tokurakwa M. Sub-6 optical-cycle Kerr-lens mode-locked Tm: Lu2O3 and Tm: Sc2O3 combined gain media laser at 2.1 µm[J]. Optics Express, 29, 19465-19471(2021).

    [52] Zhao Y, Wang L, Chen W, et al. Kerr-lens mode-locked Tm-doped sesquioxide ceramic laser[J]. Optics Letters, 46, 3428-3431(2021).

    [53] Yang K, Heinecke D, Paajaste J, et al. Mode-locking of 2 μm Tm, Ho: YAG laser with GalnAs and GaSb-based SESAMs[J]. Optics Express, 21, 4311-4318(2013).

    [54] Yang K J, Heinecke D C, Kolbl C, et al. Mode locked Tm, Ho: YAP laser around 2.1 μm[J]. Optics Express, 21, 1574-1580(2013).

    [55] Yang K J, Bromberger H, Heinecke D, et al. Efficient continuous wave and passively mode-locked Tm-doped crystalline silicate laser[J]. Optics Express, 20, 18630-18635(2012).

    [56] Lagatsky A A, Calvez S, Cupta J A, et al. Boadly tunable femtosecond mode locking in a Tm: KYW laser near 2 μm[J]. Optics Express, 19, 9995-10000(2011).

    [57] Schmidt A, Sun Y C, Yeom D I, et al. Femtosecond pulses near 2 µm from a Tm: KLuW laser mode locked by a single walled carbon nanotube saturable absorber[J]. Applied Physics Express, 5, 2704(2012).

    [58] Ling W J, Xia T, Dong Z, et al. 1.91 μm Passively continuous-wave mode-locked Tm: LiLuF4 laser[J]. Optics & Laser Technology, 108, 364-367(2018).

    [59] Ling W J, Xia T, Dong Z, et al. Passively mode-locked Tm, Ho: LLF laser at 1895 nm[J]. Journal of Optics, 48, 209-213(2019).

    [60] [60] Cheng S J. Design fluescence properties of rare earth doped fluide glass ceramics [D]. Nanjing: Nanjing University of Posts Telecommunications, 2015: 13. (in Chinese)

    [61] Nikov R, Nedyalkov N, Koleva M, et al. Femtosecond laser modification of the optical properties of glass containing noble-metal nanoparticles[J]. Journal of Physics Conference Series, 1492, 012058(2020).

    [62] Gan F X, Jiang Z H, Cai Y S. Research on Nd+ activated inorganic glass state acceptor laser emitter working material[J]. Science Bulletin, 1, 54-57(1964).

    [63] [63] Dai S X, Peng B, Wang X. 4.35 μm progress in the research of sulfur based glass materials with m medium infrared light emission [C]National Special Glass Conference of Special Glass Branch of China Silicate Society, 2008. (in Chinese)

    [64] Zhang Y, Xia L, Shen X, et al. Broadband mid-infrared emission in Dy3+/Er3+ co-doped tellurite glass[J]. Journal of Luminescence, 236, 118078(2021).

    [65] Fusari F, Lagatsky A A, Jose G, et al. Femtosecond mode-locked Tm3+and Tm3+-Ho3+ doped 2 μm glass lasers[J]. Optics Express, 18, 22090-22098(2010).

    [66] Hatch S E, Parsons W F, Weagley R J. Hot-pressed polycrystalline CaF2 Dy2+ laser[J]. Applied Physics Letters, 5, 153-154(1964).

    [67] Wang Y C, Lan R J, Mateos X, et al. Broadly tunable model-locked Ho: YAG ceramic laser around 2.1 μm[J]. Optics Express, 24, 18003-18012(2016).

    [68] Lagatsky A A, Antipov O L, Sibbett W. Boradly tunable femt-osecond Tm: Lu2O3 ceramic laser operating around 2070 nm[J]. Optics Express, 20, 19349-19354(2012).

    [69] Gaumé R, Viana B, Vivien D, et al. A simple model for the prediction of thermal conductivity in pure and doped insulating crystals[J]. Laser Physics Letters, 87, 1355-1357(2003).

    [70] Lin A X, Ryasnyanskiy A, Toulouse J. Fabrication and character rization of awater-freemid-infrared fluoro tellurite glass[J]. Optics Letters, 36, 740-742(2011).

    CLP Journals

    [1] Yangmei Liu, Yuezhang Hou, Ting Luo, Yuanzhu Zhou, Yuqi Sun, Zhili Li, Tianshu Wang, Xinjian Pan. 1 µm/1.5 µm high-repetition-rate femtosecond fiber laser based on non-reciprocal phase shifter[J]. Infrared and Laser Engineering, 2024, 53(5): 20230703

    Tools

    Get Citation

    Copy Citation Text

    Weijun Ling, Wenting Wang. Research progress of 2 μm ultrashort pulse all solid state thulium doped oscillator (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210346

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—ultrafast and ultraintense mid-infrared laser technology

    Received: May. 28, 2021

    Accepted: --

    Published Online: Nov. 2, 2021

    The Author Email:

    DOI:10.3788/IRLA20210346

    Topics