Forensic Sciences Research, Volume. 9, Issue 3, owae035(2024)

Piece by piece—a computer-aided method for virtual re-association of commingled fragmented remains

Lise Malfroy Camine1,2,3、*, Virginie Magnin4, Ruben Soto4, Christine Bruguier4,5, Silke Grabherr1, Vincent Varlet2, and Negahnaz Moghaddam2,4,6
Author Affiliations
  • 1University Center of Legal Medicine Lausanne-Geneva, Geneva University Hospitals and University of Geneva, Lausanne, Switzerland
  • 2Swiss Human Institute of Forensic Taphonomy, University Center of Legal Medicine Lausanne-Geneva, Lausanne, Switzerland
  • 3Forensic Sciences Institute of the French Gendarmerie, Institut de Recherche Criminelle de la Gendarmerie Nationale (IRCGN), Pontoise, France
  • 4Forensic Imaging and Anthropology Unit, University Center of Legal Medicine Lausanne-Geneva, Lausanne, Switzerland
  • 5Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
  • 6Forensic Pathology Unit, University Center of Legal Medicine Lausanne-Geneva, Lausanne, Switzerland
  • show less
    References(36)

    [1] SM Cordner, R Coninx, HJ Kim et al. Management of dead bodies after disasters: a field manual for first responders(2016).

    [2] HH de Boer, J Roberts, T Delabarde et al. Disaster victim identification operations with fragmented, burnt, or commingled remains: experience-based recommendations. Forensic Sci Res, 5, 191-201(2020).

    [4] AZ Mundorff, BJ Adams, JE Byrd. Commingled human remains: methods in recovery, analysis, and identification, 364-388(2014).

    [6] M Kalis. Management of dead bodies after disasters: a field manual for first responders. J Homel Secur Emerg Manag, 1-78(2006).

    [7] HH de Boer, GJR Maat, DA Kadarmo et al. DNA identification of human remains in disaster victim identification (DVI): an efficient sampling method for muscle, bone, bone marrow and teeth. Forensic Sci Int, 289, 253-259(2018).

    [8] DZC Hines, M Vennemeyer, S Amory, BJ Adams, JE Byrd et al. Commingled human remains: methods in recovery, analysis, and identification, 274-305(2014).

    [10] HH de Boer, S Blau, T Delabarde et al. The role of forensic anthropology in disaster victim identification (DVI): recent developments and future prospects. Forensic Sci Res, 4, 303-315(2019).

    [11] HH de Boer, Z Obertová, E Cunha et al. Strengthening the role of forensic anthropology in personal identification: position statement by the Board of the Forensic Anthropology Society of Europe (FASE). Forensic Sci Int, 315, 110456, 1-7(2020).

    [12] BJ Adams, JE Byrd. Commingled human remains: methods in recovery, analysis, and identification(2014).

    [13] S Naji, C de Becdeliévre, S Djouad, BJ Adams, JE Byrd et al. Commingled human remains: methods in recovery, analysis, and identification, 33-56(2014).

    [14] M Salado Puerto, S Egaña, M Doretti, BJ Adams, JE Byrd et al. Commingled human remains: methods in recovery, analysis, and identification, 306-335(2014).

    [15] LW Koniksberg, BJ Adams, BJ Adams, JE Byrd. Commingled human remains: methods in recovery, analysis, and identification, 192-220(2014).

    [16] S Parmentier. Une nouvelle méthode d'estimation du Nombre Minimum d'individus (NMI) par une approche allométrique: le NMI Par Exclusions.: applications aux séries ostéologiques de la région Provence-Alpes-Côte d'Azur(2022).

    [17] BJ Adams, JE Byrd. Recovery, analysis, and identification of commingled human remains(2008).

    [19] LA Regan, LA Tremaine, BJ Adams, JE Byrd. Commingled human remains: methods in recovery, analysis, and identification, 192-220, 337–350(2014).

    [20] AJ Collings, K Brown. Reconstruction and physical fit analysis of fragmented skeletal remains using 3D imaging and printing. Forensic Sci Int Rep, 2(2020).

    [21] SL Rennick, TW Fenton, DR Foran. The effects of skeletal preparation techniques on DNA from human and non-human bone. J Forensic Sci, 50, JFS2004405-JFS2004404(2005).

    [22] DW Steadman, LL DiAntonio, JJ Wilson et al. The effects of chemical and heat maceration techniques on the recovery of nuclear and mitochondrial DNA from bone. J Forensic Sci, 51, 11-17(2006).

    [23] FZ Benamar, E Fauvet, A Hostein et al. Toward a virtual reconstruction of an antique three-dimensional marble puzzle. J Electron Imaging, 26(2017).

    [24] F Cohen, Z Liu, T Ezgi. Virtual reconstruction of archeological vessels using expert priors and intrinsic differential geometry information. Comput Graph, 37, 41-53(2013).

    [25] D Eslami, L Di Angelo, P Di Stefano et al. Review of computer-based methods for archaeological ceramic sherds reconstruction. Virtual Archaeol Rev, 11, 34(2020).

    [26] Y Liu, H Pottmann, W Wang. Constrained 3Dshape reconstruction using a combination of surface fitting and registration. Comput-Aided Des, 38, 572-583(2006).

    [27] A Alzaid, S Dogramadzi. Reassembly of fractured object using fragment topology, 98-105(2019).

    [28] D Tsiafaki, A Koutsoudis, F Arnaoutoglou et al. Virtual reassembly and completion of a fragmentary drinking vessel. Virtual Archaeol Rev, 7, 67-76(2016).

    [29] S Chen, K Zhang, X Jia et al. Evaluation of the computer-assisted virtual surgical technology in preoperative planning for distal femoral fracture. Injury, 51, 443-451(2020).

    [30] GY Wang, WJ Huang, Q Song et al. Computer-assisted virtual preoperative planning in orthopedic surgery for acetabular fractures based on actual computed tomography data. Comput Assist Surg, 21, 160-165(2016).

    [31] M Boudissa, H Oliveri, M Chabanas et al. Computer-assisted surgery in acetabular fractures: virtual reduction of acetabular fracture using the first patient-specific biomechanical model simulator. Orthop Traumatol Surg Res, 104, 359-362(2018).

    [32] AS Chowdhury, SM Bhandarkar, RW Robinson et al. Virtual multi-fracture craniofacial reconstruction using computer vision and graph matching. Comput Med Imaging Graph, 33, 333-342(2009).

    [33] AL Brough, B Morgan, GN Rutty. Postmortem computed tomography (PMCT) and disaster victim identification. Radiol Med (Torino), 120, 866-873(2015).

    [34] L Malfroy Camine, V Varlet, L Campana et al. The big puzzle: a critical review of virtual re-association methods for fragmented human remains in a DVI context. Forensic Sci Int, 330(2022).

    [35] Irwansyah, JY Lai, T Essomba et al. Algorithm for segmentation and reduction of fractured bones in computer-aided preoperative surgery, 12-18(2016).

    [36] E DuBois, K Bowers, C Rando. An examination of the spatial distribution of the tissue fragments created during a single explosive attack. Forensic Sci Int, 279, 122-129(2017).

    [37] AM Christensen, M Whitworth. Primary and secondary skeletal blast trauma. J Forensic Sci, 57, 6-11(2012).

    [38] F Beauthier, W Van de Voorde, P Lefevre et al. Belgium experience in disaster victim identification applied in handling terrorist attack at Brussels airport 2016. Forensic Sci Res, 5, 223-231(2020).

    [39] BJ Figura, KE Latham, EJ Bartelink, M Finnegan. New perspectives in forensic human skeletal identification, 333-341(2018).

    Tools

    Get Citation

    Copy Citation Text

    Lise Malfroy Camine, Virginie Magnin, Ruben Soto, Christine Bruguier, Silke Grabherr, Vincent Varlet, Negahnaz Moghaddam. Piece by piece—a computer-aided method for virtual re-association of commingled fragmented remains[J]. Forensic Sciences Research, 2024, 9(3): owae035

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Dec. 16, 2023

    Accepted: Jul. 13, 2024

    Published Online: Sep. 22, 2025

    The Author Email: Lise Malfroy Camine (lise.malfroy@gmail.com)

    DOI:10.1093/fsr/owae035

    Topics