Opto-Electronic Engineering, Volume. 48, Issue 5, 200364(2021)
All-silicon PIN photodetector based on black silicon microstructure
[1] [1] Yin T, Cohen R, Morse M M, et al. 31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate[J]. Opt Express, 2007, 15(21): 13965–13971.
[2] [2] Virot L, Benedikovic D, Szelag B, et al. Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction[J]. Opt Express, 2017, 25(16): 19487–19496.
[3] [3] Benedikovic D, Virot L, Aubin G, et al. 25 Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures[J]. Photonics Res, 2019, 7(4): 437–444.
[4] [4] Chen H, Verheyen P, De Heyn P, et al. Dark current analysis in high-speed germanium p-i-n waveguide photodetectors[J]. J Appl Phys, 2016, 119(21): 213105.
[5] [5] Chen H, Verheyen P, De Heyn P, et al. -1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond[J]. Opt Express, 2016, 24(5): 4622–4631.
[6] [6] Cho H M, Barber W C, Ding H J, et al. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging[J]. Med Phys, 2014, 41(9): 091903.
[7] [7] Vaseashta A, Khudaverdyan S. Advanced Sensors for Safety and Security[M]. Dordrecht: Springer, 2013.
[8] [8] Ho C K, Robinson A, Miller D R, et al. Overview of sensors and needs for environmental monitoring[J]. Sensors, 2005, 5(2): 4–37.
[9] [9] Menon P S, Shaari S. Surface versus lateral illumination effects on an interdigitated Si planar PIN photodiode[J]. Proc SPIE, 2005, 5881: 58810S.
[10] [10] Tasirin S K, Menon P S, Ahmad I, et al. High performance silicon lateral PIN photodiode[J]. IOP Conf Ser: Earth Environ Sci, 2013, 16: 012032.
[11] [11] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Appl Phys Lett, 1998, 73(12): 1673–1675.
[12] [12] Wu C, Crouch C H, Zhao L, et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Appl Phys Lett, 2001, 78(13): 1850–1852.
[13] [13] Savin H, Repo P, von Gastrow G, et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency[J]. Nat Nanotechnol, 2015, 10(7): 624–628.
[14] [14] Winkler M T, Sher M J, Lin Y T, et al. Studying femtosecond-laser hyperdoping by controlling surface morphology[J]. J Appl Phys, 2012, 111(9): 093511.
[15] [15] Crouch C H, Carey J E, Shen M, et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J]. Appl Phys A, 2004, 79(7): 1635–1641.
[16] [16] Sher M J. Intermediate band properties of femtosecond-laser hyperdoped silicon[D]. Cambridge, Massachusetts: Harvard University, 2013.
[17] [17] Baker-Finch S C, Mcintosh K R. Reflection distributions of textured monocrystalline silicon: implications for silicon solar cells[J]. Prog Photovolt, 2013, 21(5): 960–971.
[18] [18] Peng K Q, Xu Y, Wu Y, et al. Aligned single-crystalline Si nanowire arrays for photovoltaic applications[J]. Small, 2005, 1(11): 1062–1067.
[19] [19] Shen M Y, Crouch C H, Carey J E, et al. Femtosecond laser-induced formation of submicrometer spikes on silicon in water[J]. Appl Phys Lett, 2004, 85(23): 5694–5696.
[20] [20] Hamamatsu Photonicas. Silicon photodiode S1336-8BK[EB/OL].[2021-01-12]. http://www.hamamatsu.com.cn/product/17585.html.
[21] [21] Hamamatsu Photonicas. Silicon photodiode S3477-04[EB/OL].[2021-01-12]. http://www.hamamatsu.com.cn/product/17626.html.
[22] [22] Hamamatsu Photonicas. Silicon photodiode S12698-02[EB/OL].[2021-01-12]. http://www.hamamatsu.com.cn/product/18699.html.
Get Citation
Copy Citation Text
Zheng Zeyu, Luo Qian, Xu Kaikai, Liu Zhongyuan, Zhu Kunfeng. All-silicon PIN photodetector based on black silicon microstructure[J]. Opto-Electronic Engineering, 2021, 48(5): 200364
Category: Article
Received: Oct. 10, 2020
Accepted: --
Published Online: Sep. 4, 2021
The Author Email: Kaikai Xu (kaikaix@uestc.edu.cn)