Opto-Electronic Advances, Volume. 8, Issue 3, 240193-1(2025)

A novel approach towards robust construction of physical colors on lithium niobate crystal

Quanxin Yang1,2、†, Menghan Yu1、†, Zhixiang Chen3、†, Siwen Ai1, Ulrich Kentsch4, Shengqiang Zhou4, Yuechen Jia3,5、*, Feng Chen3, and Hongliang Liu1,6,7、**
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2Hangzhou Institute of Technology, Xidian University, Hangzhou 311231, China
  • 3School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 4Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden 01328, Germany
  • 5National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
  • 6State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
  • 7Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
  • show less
    References(43)

    [1] K Liu, ZY Lin, B Han et al. Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators. Opto-Electron Adv, 7, 230033(2024).

    [2] JY Jia, Y Ban, K Liu et al. Reconfigurable full color display using anisotropic black phosphorus. Adv Opt Mater, 9, 2100499(2021).

    [3] T Cao, XY Zhang, W Dong et al. Tuneable thermal emission using chalcogenide metasurface. Adv Opt Mater, 6, 1800169(2018).

    [4] Y Ban, JY Jia, Y Zhan et al. A black phosphorus-based Fabry–Pérot cavity and its application for reversible color switching. Adv Photonics Res, 3, 2200137(2022).

    [5] TW Lu, Y Lin, TQ Zhang et al. Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications. Opto-Electron Adv, 7, 230210(2024).

    [6] ZP Li, SN Li, T Ma. Using photonic glasses as colored covers for solar energy harvesting. Adv Opt Mater, 11, 2202370(2023).

    [7] A Soman, A Antony. Colored solar cells with spectrally selective photonic crystal reflectors for application in building integrated photovoltaics. Sol Energy, 181, 1-8(2019).

    [8] A Li, DP Yang, C Cao et al. Mechano-chromic photonic crystals with substrate-independent brilliant colors for visual sensing and anti-counterfeiting applications. Adv Mater Interfaces, 9, 2200051(2022).

    [9] Y Sun, XX Le, SY Zhou et al. Recent progress in smart polymeric gel-based information storage for anti-counterfeiting. Adv Mater, 34, 2201262(2022).

    [10] HT Li, MJ Zhu, F Tian et al. Polychrome photonic crystal stickers with thermochromic switchable colors for anti-counterfeiting and information encryption. Chem Eng J, 426, 130683(2021).

    [11] SN Dong, QQ Zheng, MQ Tang et al. Ionic microgel colloidal crystals: responsive chromism in dual physical and chemical colors for high-end information security and encryption. ACS Appl Mater Interfaces, 15, 33985-33997(2023).

    [12] K Sun, DZ Tan, XY Fang et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science, 375, 307-310(2022).

    [13] J Geng, LY Xu, W Yan et al. High-speed laser writing of structural colors for full-color inkless printing. Nat Commun, 14, 565(2023).

    [14] AS Roberts, SM Novikov, YQ Yang et al. Laser writing of bright colors on near-percolation plasmonic reflector arrays. ACS Nano, 13, 71-77(2019).

    [15] F Fraggelakis, GD Tsibidis, E Stratakis. Ultrashort pulsed laser induced complex surface structures generated by tailoring the melt hydrodynamics. Opto-Electron Adv, 5, 210052(2022).

    [16] YC Zhang, QL Jiang, MQ Long et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications. Opto-Electron Sci, 1, 220005(2022).

    [17] QL Jiang, L Chen, JK Liu et al. Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing. Opto-Electron Sci, 2, 220002(2023).

    [18] JM Guay, Lesina A Calà, G Côté et al. Laser-induced plasmonic colours on metals. Nat Commun, 8, 16095(2017).

    [19] ZM Liu, G Vitrant, Y Lefkir et al. Laser induced mechanisms controlling the size distribution of metallic nanoparticles. Phys Chem Chem Phys, 18, 24600-24609(2016).

    [20] I Zare, MT Yaraki, G Speranza et al. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev, 51, 2601-2680(2022).

    [21] HJ Kim, MM Hossen, AC Hillier et al. Interfacial and bulk assembly of anisotropic gold nanostructures: Implications for photonics and plasmonics. ACS Appl Nano Mater, 3, 8216-8223(2020).

    [22] WJ Zhou, JZ Shi, RY Chen et al. Aggregation of gold nanoparticles for controlling emission polarization: Implications for applications in photonics. ACS Appl Nano Mater, 7, 15025-15034(2024).

    [23] A Guglielmelli, F Pierini, N Tabiryan et al. Thermoplasmonics with gold nanoparticles: a new weapon in modern optics and biomedicine. Adv Photonics Res, 2, 2000198(2021).

    [24] QX Yang, XJ Li, HL Liu et al. Obvious phase transition status induced by He+-ions implantation in KTN crystal. Acta Mater, 221, 117376(2021).

    [25] X Wei, PD Liu, SJ Ma et al. Improvement on corrosion resistance and biocompability of ZK60 magnesium alloy by carboxyl ion implantation. Corros Sci, 173, 108729(2020).

    [26] A Das, D Basak. Efficacy of ion implantation in zinc oxide for optoelectronic applications: a review. ACS Appl Electron Mater, 3, 3693-3714(2021).

    [27] CE Athanasiou, HL Zhang, C Ramirez et al. High toughness carbon-nanotube-reinforced ceramics via ion-beam engineering of interfaces. Carbon, 163, 169-177(2020).

    [28] Devi K Devarani, A Sharma, S Ojha et al. Effect of isothermal annealing on the bimetallic gold-silver nanoparticles synthesized by sequential implantation in quartz matrices and their surface Plasmon resonance properties. Mater Today Commun, 40, 109488(2024).

    [29] T Yamada, K Fukuda, S Semboshi et al. Control of optical absorption of silica glass by Ag ion implantation and subsequent heavy ion irradiation. Nanotechnology, 31, 455706(2020).

    [30] B Wu, H Zhu, B Zhang et al. Plasmon guided assembly of nanoparticles in solids. Mater Today Nano, 21, 100299(2023).

    [31] H Zhu, LR Chu, WJ Liu et al. Ultrafast laser‐induced plasmonic modulation of optical properties of dielectrics at high resolution. Adv Opt Mater, 11, 2300929(2023).

    [32] KA Dahan, Y Li, J Xu et al. Recent progress of gold nanostructures and their applications. Phys Chem Chem Phys, 25, 18545-18576(2023).

    [33] Bercea A Ionut, C Champeaux, A Boulle et al. Adaptive gold/vanadium dioxide periodic arrays for infrared optical modulation. Appl Surf Sci, 585, 152592(2022).

    [34] M Chauhan, Singh V Kumar. Review on recent experimental SPR/LSPR based fiber optic analyte sensors. Opt Fiber Technol, 64, 102580(2021).

    [35] LR Chu, H Zhu, XL Sun et al. Gold-nanoparticles induced transition in YVO4 crystal: from saturable to reverse saturable absorption. Opt Mater, 135, 113342(2023).

    [36] SS Li, YN Fang, JF Wang. Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures. Opto-Electron Sci, 3, 240011(2024).

    [37] DZ Tan, B Zhang, JR Qiu. Ultrafast laser direct writing in glass: Thermal accumulation engineering and applications. Laser Photonics Rev, 15, 2000455(2021).

    [38] SQ Lai, SB Liu, ZL Li et al. Applications of lasers: a promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays. Opto-Electron Sci, 2, 230028(2023).

    [39] AM Berhe, K As’ham, I Al-Ani et al. Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers. Opto-Electron Adv, 7, 230181(2024).

    [40] LW Chen, MH Hong. Functional nonlinear optical nanoparticles synthesized by laser ablation. Opto-Electron Sci, 1, 210007(2022).

    [41] LW Chen, XF Jiang, ZM Guo et al. Tuning optical nonlinearity of laser-ablation-synthesized silicon nanoparticles via doping concentration. J Nanomater, 2014, 652829(2014).

    [42] MD Fontana, P Bourson. Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices. Appl Phys Rev, 2, 040602(2015).

    [43] AR Zanatta. Raman spectroscopy of lithium niobate (LiNbO3) − sample temperature and laser spot size effects. Results Phys, 47, 106380(2023).

    Tools

    Get Citation

    Copy Citation Text

    Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu. A novel approach towards robust construction of physical colors on lithium niobate crystal[J]. Opto-Electronic Advances, 2025, 8(3): 240193-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 22, 2024

    Accepted: Nov. 19, 2024

    Published Online: May. 28, 2025

    The Author Email: Yuechen Jia (YCJia), Hongliang Liu (HLLiu)

    DOI:10.29026/oea.2025.240193

    Topics