Chinese Journal of Lasers, Volume. 50, Issue 13, 1304003(2023)

Robot Grasp Detection Method Based on Stable Lightweight Network

Zhichao Xu1, Junpeng Xue1、*, Pengfei Sun2, Zeyu Song1, Changzhi Yu2, and Wenbo Lu1
Author Affiliations
  • 1School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, Sichuan, China
  • 2Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621999, Sichuan, China
  • show less
    References(30)

    [1] Zhang L, Xu X B, Cao C F et al. Robot pose estimation method based on image and point cloud fusion with dynamic feature elimination[J]. Chinese Journal of Lasers, 49, 0610001(2022).

    [2] Cui H H, Lou H C, Tian W et al. High-precision visual positioning of hole-making datum for orbital crawling robot[J]. Acta Optica Sinica, 41, 0915002(2021).

    [3] Huang H M, Liu G H, Duan K R. Robot bin-picking based on micro-electromechanical system structure light projector[J]. Chinese Journal of Lasers, 46, 0204002(2019).

    [4] Du X D, Cai Y H, Lu T et al. A robotic grasping method based on deep learning[J]. Robot, 39, 820-828, 837(2017).

    [5] Jiang Y, Moseson S, Saxena A. Efficient grasping from RGBD images: learning using a new rectangle representation[C], 3304-3311(2011).

    [6] Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps[J]. International Journal of Robotics Research, 34, 705-724(2015).

    [7] Chu F J, Xu R N, Vela P A. Real-world multiobject, multigrasp detection[J]. IEEE Robotics and Automation Letters, 3, 3355-3362(2018).

    [8] Redmon J, Angelova A. Real-time grasp detection using convolutional neural networks[C], 1316-1322(2015).

    [9] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).

    [10] Kumra S, Kanan C. Robotic grasp detection using deep convolutional neural networks[C], 769-776(2017).

    [11] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [12] Li Z M, Zhang J L. Detection and positioning of grab target based on deep learning[J]. Information and Control, 49, 147-153(2020).

    [13] Zhang H, Duan D Y. Computational ghost imaging with compressed sensing based on a convolutional neural network[J]. Chinese Optics Letters, 19, 101101(2021).

    [14] Shao B, Yang H, Zhu B et al. Infrared small target detection algorithm based on real-time semantic segmentation[J]. Laser & Optoelectronics Progress, 60, 1410006(2023).

    [15] Ma Q Q, Li X J, Shi Z P. Research on light-weight convolutional neural network for robotic grasp detection[J]. Computer Engineering and Applications, 56, 141-148(2020).

    [17] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015, 9351, 234-241(2015).

    [18] Xiao S G. Position and attitude determination based on deep learning for object grasping[D](2019).

    [19] Kumra S, Joshi S, Sahin F. Antipodal robotic grasping using generative residual convolutional neural network[C], 9626-9633(2021).

    [20] Ulyanov D, Vedaldi A, Lempitsky V. Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis[C], 4105-4113(2017).

    [21] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).

    [22] Meyer G P. An alternative probabilistic interpretation of the Huber loss[C], 5257-5265(2021).

    [23] Morrison D, Corke P, Leitner J. Learning robust, real-time, reactive robotic grasping[J]. International Journal of Robotics Research, 39, 183-201(2020).

    [26] Hao C, Tian J, Han H et al. Real-time grab detection algorithm based on attention mechanism[J]. Transducer and Microsystem Technologies, 41, 131-134(2022).

    [27] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[C], 1137-1149(2016).

    [28] Jiang B R, Luo R X, Mao J Y et al. Acquisition of localization confidence for accurate object detection[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018, 11218, 816-832(2018).

    [29] Bergamini L, Sposato M, Pellicciari M et al. Deep learning-based method for vision-guided robotic grasping of unknown objects[J]. Advanced Engineering Informatics, 44, 101052(2020).

    [30] Shi C Q, Miao C X, Zhong X G et al. Pixel-level grasp detection for unknown objects with encoder-decoder-inception deep network[C], 1153-1157(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zhichao Xu, Junpeng Xue, Pengfei Sun, Zeyu Song, Changzhi Yu, Wenbo Lu. Robot Grasp Detection Method Based on Stable Lightweight Network[J]. Chinese Journal of Lasers, 2023, 50(13): 1304003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Measurement and metrology

    Received: Nov. 4, 2022

    Accepted: Feb. 16, 2023

    Published Online: Jun. 27, 2023

    The Author Email: Junpeng Xue (jpxue@scu.edu.cn)

    DOI:10.3788/CJL221397

    Topics