Journal of Infrared and Millimeter Waves, Volume. 39, Issue 1, 56(2020)

A 3.0 THz detector in 65 nm standard CMOS process

Tong FANG1,3, Li-Yuan LIU1,3、*, Zhao-Yang LIU1,3, Peng FENG1,3, Yuan-Yuan LI2,3, Jun-Qi LIU2,3, Jian LIU1,3, and Nan-Jian WU1,3
Author Affiliations
  • 1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing00083, China
  • 2Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing100083, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
  • show less
    References(34)

    [1] Woolard D L, Jensen J O, Hwu R J. Terahertz science and technology for military and security applications. world scientific(2007).

    [2] Cassar Q, Al-Ibadi A, Mavarani L. Pilot study of freshly excised breast tissue response in the 300–600 GHz range. Biomedical optics express, 9, 2930-2942(2018).

    [3] Hoshina H, Sasaki Y, Hayashi A. Noninvasive mail inspection system with terahertz radiation. Applied spectroscopy, 63, 81-86(2009).

    [4] Hosako I, Oda N. : 003651. SPIE Newsroom, 1201105(2011).

    [5] Lee Y S. Principles of terahertz science and technology. Springer Science & Business Media(2009).

    [6] Kreisler A J, Gaugue A. Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range, 13, 1235(2000).

    [8] Liu Z, Liu L, Yang J. A CMOS fully integrated 860-GHz terahertz sensor, 7, 455-465(2017).

    [9] Dyakonov M I, Shur M S. Plasma wave electronics: novel terahertz devices using two dimensional electron fluid. IEEE Transactions on Electron Devices, 43, 1640-1645(1996).

    [10] Knap W, Kachorovskii V, Deng Y. Nonresonant detection of terahertz radiation in field effect transistors. Journal of Applied Physics, 91, 9346-9353(2002).

    [11] Knap W, Teppe F, Meziani Y. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Applied Physics Letters, 85, 675-677(2004).

    [12] Ojefors E, Pfeiffer U R, Lisauskas A. A 0.65 THz focal-plane array in a quarter-micron CMOS process technology. IEEE Journal of Solid-State Circuits, 44, 1968-1976(2009).

    [13] Al Hadi R, Sherry H, Grzyb J. A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 47, 2999-3012(2012).

    [14] Fang T, Dou R, Liu L. A 25 fps 32× 24 Digital CMOS Terahertz Image Sensor, 87-90(2018).

    [15] [15] 15International Telecommunication Union ITU-R P.676-11: Attenuation by Atmospheric Gases (ITU, 2016.

    [17] Fang T, Liu Z, Liu L. 65 nm standard CMOS process, 189-192(2017).

    [18] Gutin A, Kachorovskii V, Muraviev A, Shur M. Plasmonic terahertz detector response at high intensities. Journal of Applied Physics, 112, 014508(2012).

    [19] Khmyrova I, Seijyou Y. Analysis of plasma oscillations in high-electron mobility transistorlike structures: Distributed circuit approach. Applied Physics Letters, 91, 143515(2007).

    [20] Lisauskas A, Pfeiffer U, Öjefors E. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. Journal of Applied Physics, 105, 114511(2009).

    [22] Lisauskas A, Glaab D, Roskos H G. Terahertz imaging with Si MOSFET focal-plane arrays, 7215, 72150J(2009).

    [23] Al Hadi R, Sherry H, Grzyb J. 1 THz CMOS imaging detector with an integrated lens, 1-4(2011).

    [25] Kompfner R, Williams N T. Backward-wave tubes. Proceedings of the IRE, 41, 1602-1611(1953).

    [26] Ward J, Schlecht E, Chattopadhyay G. 37535), 3, 1587-1590(2004).

    [27] LI L, CHEN L, ZHU J. Terahertz quantum cascade lasers with > 1 W output powers. Electronics Letters, 50, 309-310(2014).

    [29] Tauk R, Teppe F, Boubanga S. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Applied Physics Letters, 89, 253511(2006).

    [30] Mackowiak V, Peupelmann J, Ma Y. Nepnoise equivalent power(2015).

    [31] Zdanevičius J, Čibiraitė D, Ikamas K. Field-Effect Transistor Based Detectors for Power Monitoring of THz Quantum Cascade Lasers, 8, 613-621(2018).

    [32] Bauer M, Venckevičius R, Kašalynas I. Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25 THz. Optics express, 22, 19235-19241(2014).

    [33] Boppel S, Lisauskas A, Bauer M. Optimized Tera-FET detector performance based on an analytical device model verified up to 9 THz. 2013 38th International Conference on. IEEE, 1-1(2013).

    [34] Ikamas K, Lisauskas A, Boppel S. Efficient detection of 3 THz radiation from quantum cascade laser using silicon CMOS detectors. Terahertz Waves, 38, 1183-1188(2017).

    [35] Ahmad Z, Lisauskas A, Roskos H G. 4. IEEE International Electron Devices Meeting. IEEE, 1, 4(4).

    [36] Boppel S, Lisauskas A, Mundt M. CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz. IEEE Transactions on Microwave Theory and Techniques, 60, 3834-3843(2012).

    Tools

    Get Citation

    Copy Citation Text

    Tong FANG, Li-Yuan LIU, Zhao-Yang LIU, Peng FENG, Yuan-Yuan LI, Jun-Qi LIU, Jian LIU, Nan-Jian WU. A 3.0 THz detector in 65 nm standard CMOS process[J]. Journal of Infrared and Millimeter Waves, 2020, 39(1): 56

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Millimeter Wave and Terahertz Technology

    Received: May. 8, 2019

    Accepted: --

    Published Online: Mar. 12, 2020

    The Author Email: Li-Yuan LIU (liuly@semi.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2020.01.009

    Topics