Journal of Synthetic Crystals, Volume. 54, Issue 2, 227(2025)

Homoepitaxial Growth of Gallium Oxide Thick Films by HVPE Method

DONG Zengyin1...2, WANG Yingmin1,*, ZHANG Song1, LI He1, SUN Kewei1, CHENG Hongjuan1 and LIU Chao2 |Show fewer author(s)
Author Affiliations
  • 1The 46th Research Institute, China Electronics Technology Group Corporation, Tianjin 300220, China
  • 2School of Integrated Circuits, Shandong University, Jinan 250100, China
  • show less
    References(24)

    [1] [1] AKITO K, KIMIYOSHI K, SHINYA W, et al. High-quality -Ga2O3 single crystals grown by edge-defined film-fed growth[J]. Japanese Journal of Applied Physics, 2016, 55: 1202A2.

    [2] [2] STEPANOV S I, NIKOLAEV V I, BOUGROV V E, et al. Gallium oxide: properties and applications-a review[J]. Reviews on Applied Materials Science, 2016, 44: 63-86.

    [3] [3] WASEEM A, REN Z, HUANG H C, et al. A review of recent progress in -Ga2O3 epitaxial growth: effect of substrate orientation and precursors in metal-organic chemical vapor deposition[J]. Physica Status Solidi A, 2023, 220(8): 2200616.

    [4] [4] XIONG Z N, XIU X Q, LI Y W, et al. Growth of -Ga2O3 films on sapphire by hydride vapor phase epitaxy[J]. Chinese Physics Letters, 2018, 35(5): 162-164.

    [5] [5] XU G W, WU F H, LIU Q, et al. Vertical -Ga2O3 power electronics[J]. Journal of Semiconductors, 2023, 44(7): 070301.

    [6] [6] GALIA P, HSU C W, NATALIA A, et al. Development of -Ga2O3 layers growth on sapphire substrates employing modeling of precursors ratio in halide vapor phase epitaxy reactor[J]. Scientific Reports, 2020, 10: 22261.

    [7] [7] QIN Y, WANG Z, SASAKI K, et al. Recent progress of Ga2O3 power technology: large-area devices, packaging and applications[J]. Japanese Journal of Applied Physics, 2023, 62: SF0801.

    [8] [8] NOMURA K, GOTO K, TOGASHI R, et al. Thermodynamic study of beta-Ga2O3 growth by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 2014, 405: 19-22.

    [9] [9] KONISHI K, GOTO K, TOGASHI R, et al. Comparison of O2 and H2O as oxygen source for homoepitaxial growth of beta-Ga2O3 layers by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 2018, 492: 39-44.

    [10] [10] MURAKAMI H, NOMURA K, GOTO K, et al. Homoepitaxial growth of -Ga2O3 layers by halide vapor phase epitaxy[J]. Applied Physics Express, 2015, 8(1): 015503.

    [11] [11] GOTO K, MURAKAMI H, KURAMATA A, et al. Effect of substrate orientation on homoepitaxial growth of -Ga2O3 by halide vapor phase epitaxy[J]. Applied physics letters, 2022(10): 120.

    [12] [12] YUICHI O, TAKAYOSHI O. Homoepitaxial growth of (-102) -Ga2O3 by halide vapor phase epitaxy[J]. Semiconductor Science and Technology, 2023, 38: 105003.

    [13] [13] GOTO K, KONISHI K, et al. Halide vapor phase epitaxy of Si doped -Ga2O3 and its electrical properties[J]. Thin Solid Films, 2018, 66: 182-184.

    [14] [14] MARKO J T, ANDREW D K, JAIME A F, et al. High resistivity halide vapor phase homoepitaxial beta-Ga2O3 films co-doped by silicon and nitrogen[J]. Applied Physics Letters, 2018, 113: 192102.

    [15] [15] LEACH J, UDWARY K, RUMSEY J, et al. Halide vapor phase epitaxial growth of -Ga2O3 and -Ga2O3 films[J]. APL Mater, 2019, 7: 022504.

    [16] [16] SAYLEP S, KOHEI S, KATSUMI K, et al. Polycrystalline defects—origin of leakage current—in halide vapor phase epitaxial (001) -Ga2O3 Schottky barrier diodes identified via ultrahigh sensitive emission microscopy and synchrotron X-ray topography[J]. Applied Physics Express, 2021, 14: 036502.

    [17] [17] SAYLEP S, KOHEI S, KATSUMI K, et al. Characterization of dislocation of halide vapor phase epitaxial (001) -Ga2O3 by ultrahigh sensitive emission microscopy and synchrotron X-ray topography and its influence on Schottky barrier diodes[J]. Japanese Journal of Applied Physics, 2023, 62: SF1001.

    [18] [18] KASU M, OTSUBO Y, SDOEUNG S, et al. Microgrooves with low-index facets in halide vapor deposited (001) -Ga2O3: origin of reverse leakage current in Schottky barrier diodes observed by high-sensitive emission microscopy and synchrotron X-ray topography[J]. Applied Physics Express, 2024, 17: 071004.

    [20] [20] LI B, CHEN T, ZHANG L, et al. Enhancement-mode Ga2O3 FETs with an unintentionally doped (001) -Ga2O3 channel layer grown by metal-organic chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2024, 63: 070901.

    [21] [21] NING P, JONA G, JURGEN B, et al. Lattice vibrations and optical properties of -Ga2O3 films grown by halide vapor phase epitaxy[J]. Semiconductor Science and Technology, 2020, 35: 095001.

    [22] [22] XU W, LI Y, LI B, et al. (31ˉ0)-Oriented -Ga2O3 grown on (0001) sapphire by halide vapor phase epitaxy: growth and structural characterizations[J]. CrystEngComm, 2023, 25: 6044-6049.

    [23] [23] FIKADU A, ZHANG Y, ANDREI O, et al. Low 1014 cm-3 free carrier concentration in epitaxial -Ga2O3 grown by MOCVD[J]. APL Materials, 2020, 8: 021110.

    [24] [24] LIN C, KENTARO E, SATOSHI M, et al. Uniformity improvement of thickness and net donor concentration in halide vapor phase epitaxial -Ga2O3 wafers prepared on miscut angle substrates[J]. Japanese Journal Of Applied Physics, 2023, 62: SF1005.

    [25] [25] LARKIN D J, NEUDECK P G. Site-competition epitaxy for superior silicon carbide electronics[J]. Applied Physics Letters, 1994, 65(13): 1659-1661.

    Tools

    Get Citation

    Copy Citation Text

    DONG Zengyin, WANG Yingmin, ZHANG Song, LI He, SUN Kewei, CHENG Hongjuan, LIU Chao. Homoepitaxial Growth of Gallium Oxide Thick Films by HVPE Method[J]. Journal of Synthetic Crystals, 2025, 54(2): 227

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 24, 2024

    Accepted: Mar. 31, 2025

    Published Online: Mar. 31, 2025

    The Author Email: WANG Yingmin (wymzll@126.com)

    DOI:10.16553/j.cnki.issn1000-985x.2024.0251

    Topics