Infrared and Laser Engineering, Volume. 51, Issue 11, 20220597(2022)
Advances in live cell imaging technology of CRISPR/Cas9 system (invited)
[1] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv für Mikroskopische Anatomie, 9, 413-468(1873).
[2] Huang B, Wang W, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008).
[3] Wei Tongda, Zhang Yunhai, Yang Haomin. Super resolution imaging technology of stimulated emission depletion[J]. Infrared and Laser Engineering, 45, 0624001(2016).
[4] Yang Jianyu, Pan Leiting, Hu Fen, et al. Stochastic Optical Reconstruction Microscopy and its application[J]. Infrared and Laser Engineering, 46, 1103008(2017).
[5] Zhang Zhimin, Kuang Cuifang, Wang Ziang, et al. Dual-color fluorescence emission difference super-resolution microscopy[J]. Chinese Optics, 11, 329-336(2018).
[6] Shim S H, Xia C, Zhong G, et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 13978-13983(2012).
[7] Zhu F, Yang Z, Wang F, et al. 4-Dimensional observation ER-mitochondria interaction in living cells under nanoscopy by a stable pyridium salt as biosensor[J]. Sensors and Actuators B:Chemical, 305, 127492(2020).
[8] Chylinski K, Makarova K S, Charpentier E, et al. Classification and evolution of type II CRISPR-Cas systems[J]. Nucleic Acids Research, 42, 6091-6105(2014).
[9] Pennisi E. The CRISPR craze[J]. Science, 341, 833-836(2013).
[10] Shalem O, Sanjana N E, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science, 343, 84-87(2014).
[11] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 337, 816-821(2012).
[12] Qiao H, Wu J, Zhang X, et al. The advance of CRISPR-Cas9-Based and NIR/CRISPR-Cas9-Based imaging system[J]. Frontiers in Chemistry, 9, 786354(2021).
[13] Chen B, Gilbert L A, Cimini B A, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system[J]. Cell, 155, 1479-1491(2013).
[14] Beliveau B J, Boettiger A N, Avendaño M S, et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes[J]. Nature Communications, 6, 7147(2015).
[15] Marklund E, Van Oosten B, Mao G, et al. DNA surface exploration and operator bypassing during target search[J]. Nature, 583, 858-861(2020).
[16] Liu Y, Zhao N, Kanemaki M T, et al. Visualizing looping of two endogenous genomic loci using synthetic zinc-finger proteins with anti-FLAG and anti-HA frankenbodies in living cells[J]. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 26, 905-926(2021).
[17] Hu H, Zhang H, Wang S, et al. Live visualization of genomic loci with BiFC-TALE[J]. Scientific Reports, 7, 40192(2017).
[18] Liu Zhihe, Wu Changfeng. Advances in application of materials of super-resolution imaging fluorescent probe[J]. Chinese Optics, 11, 344-362(2018).
[19] Wu X, Mao S, Ying Y, et al. Progress and challenges for live-cell imaging of genomic loci using CRISPR-based platforms[J]. Genomics, Proteomics & Bioinformatics, 17, 119-128(2019).
[20] Tanenbaum M E, Gilbert L A, Qi L S, et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging[J]. Cell, 159, 635-646(2014).
[21] Shao S, Chang L, Sun Y, et al. Multiplexed sgRNA expression allows versatile single nonrepetitive DNA labeling and endogenous gene regulation[J]. ACS Synthetic Biology, 7, 176-186(2018).
[22] Sun N H, Chen D Y, Ye L P, et al. CRISPR-sunspot: Imaging of endogenous low-abundance RNA at the single-molecule level in live cells[J]. Theranostics, 10, 10993-11012(2020).
[23] Le P, Ahmed N, Yeo G W. Illuminating RNA biology through imaging[J]. Nature Cell Biology, 24, 815-824(2022).
[24] [24] Lyu X Y, Deng Y, Huang X Y, et al. CRISPR FISHer enables highsensitivity imaging of nonrepetitive DNA in living cells through phase separationmediated signal amplification [JOL]. Cell Research, (20220914)[20221010]. https:www.nature.comarticless4142202200712z.
[25] Ma H, Tu L C, Naseri A, et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow[J]. Nature Biotechnology, 34, 528-530(2016).
[26] Deng W, Shi X, Tjian R, et al. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 11870-11875(2015).
[27] Guan J, Liu H, Shi X, et al. Tracking multiple genomic elements using correlative CRISPR imaging and sequential DNA FISH[J]. Biophysical Journal, 112, 1077-1084(2017).
[28] Wagh S B, Maslivetc V A, La Clair J J, et al. Lessons in organic fluorescent probe discovery[J]. Chembiochem, 22, 3109-3139(2021).
[29] Knight S C, Xie L, Deng W, et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells[J]. Science, 350, 823-826(2015).
[30] Ma H, Tu L C, Naseri A, et al. CRISPR-Cas9 nuclear dynamics and target recognition in living cells[J]. The Journal of Cell Biology, 214, 529-537(2016).
[31] Liu Y, Miao K, Dunham N P, et al. The cation-π interaction enables a Halo-Tag fluorogenic probe for fast no-wash live cell imaging and gel-free protein quantification[J]. Biochemistry, 56, 1585-1595(2017).
[32] Mao S, Ying Y, Wu X, et al. CRISPR/dual-FRET molecular beacon for sensitive live-cell imaging of non-repetitive genomic loci[J]. Nucleic Acids Research, 47, e131(2019).
[33] Ishii T, Schubert V, Khosravi S, et al. RNA-guided endonuclease-in situ labelling (RGEN-ISL): a fast CRISPR/Cas9-based method to label genomic sequences in various species[J]. The New Phytologist, 222, 1652-1661(2019).
[34] Kumar Y R, Deshmukh K, Sadasivuni K K, et al. Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review[J]. RSC Advances, 10, 23861-23898(2020).
[35] Chen L Q, Xiao S J, Hu P P, et al. Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics[J]. Analytical Chemistry, 84, 3099-3110(2012).
[36] Ma Y, Wang M, Li W, et al. Live visualization of HIV-1 proviral DNA using a Dual-Color-Labeled CRISPR system[J]. Analytical Chemistry, 89, 12896-12901(2017).
[37] Yang Y B, Tang Y D, Hu Y, et al. Single virus tracking with quantum dots packaged into enveloped viruses using CRISPR[J]. Nano Letters, 20, 1417-1427(2020).
[38] Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/Cas-9-Mediated genome editing[J]. Biologics:Targets & Therapy, 15, 353-361(2021).
[39] Nelles D A, Fang M Y, O'connell M R, et al. Programmable RNA tracking in live cells with CRISPR/Cas9[J]. Cell, 165, 488-496(2016).
[40] Lazzarotto C R, Malinin N L, Li Y, et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR-Cas9 genome-wide activity[J]. Nature Biotechnology, 38, 1317-1327(2020).
[41] Nidhi S, Anand U, Oleksak P, et al. Novel CRISPR-Cas systems: an updated review of the current achievements, applications, and future research perspectives[J]. International Journal of Molecular Sciences, 22, 3327(2021).
Get Citation
Copy Citation Text
Yue Kang, Xueyao Liao, Xiangyu Tan, Ping Guo, Xun Tian. Advances in live cell imaging technology of CRISPR/Cas9 system (invited)[J]. Infrared and Laser Engineering, 2022, 51(11): 20220597
Category: Special issue-Fluorescence microscopy: techniques and applications
Received: Aug. 19, 2022
Accepted: --
Published Online: Feb. 9, 2023
The Author Email: