Infrared and Laser Engineering, Volume. 51, Issue 11, 20220597(2022)
Advances in live cell imaging technology of CRISPR/Cas9 system (invited)
[1] E Abbe. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv für Mikroskopische Anatomie, 9, 413-468(1873).
[2] B Huang, W Wang, M Bates, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810-813(2008).
[3] Tongda Wei, Yunhai Zhang, Haomin Yang. Super resolution imaging technology of stimulated emission depletion. Infrared and Laser Engineering, 45, 0624001(2016).
[4] Jianyu Yang, Leiting Pan, Fen Hu, et al. Stochastic Optical Reconstruction Microscopy and its application. Infrared and Laser Engineering, 46, 1103008(2017).
[5] Zhimin Zhang, Cuifang Kuang, Ziang Wang, et al. Dual-color fluorescence emission difference super-resolution microscopy. Chinese Optics, 11, 329-336(2018).
[6] S H Shim, C Xia, G Zhong, et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proceedings of the National Academy of Sciences of the United States of America, 109, 13978-13983(2012).
[7] F Zhu, Z Yang, F Wang, et al. 4-Dimensional observation ER-mitochondria interaction in living cells under nanoscopy by a stable pyridium salt as biosensor. Sensors and Actuators B:Chemical, 305, 127492(2020).
[8] K Chylinski, K S Makarova, E Charpentier, et al. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Research, 42, 6091-6105(2014).
[9] E Pennisi. The CRISPR craze. Science, 341, 833-836(2013).
[10] O Shalem, N E Sanjana, E Hartenian, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343, 84-87(2014).
[11] M Jinek, K Chylinski, I Fonfara, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-821(2012).
[12] H Qiao, J Wu, X Zhang, et al. The advance of CRISPR-Cas9-Based and NIR/CRISPR-Cas9-Based imaging system. Frontiers in Chemistry, 9, 786354(2021).
[13] B Chen, L A Gilbert, B A Cimini, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155, 1479-1491(2013).
[14] B J Beliveau, A N Boettiger, M S Avendaño, et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nature Communications, 6, 7147(2015).
[15] E Marklund, Oosten B Van, G Mao, et al. DNA surface exploration and operator bypassing during target search. Nature, 583, 858-861(2020).
[16] Y Liu, N Zhao, M T Kanemaki, et al. Visualizing looping of two endogenous genomic loci using synthetic zinc-finger proteins with anti-FLAG and anti-HA frankenbodies in living cells. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 26, 905-926(2021).
[17] H Hu, H Zhang, S Wang, et al. Live visualization of genomic loci with BiFC-TALE. Scientific Reports, 7, 40192(2017).
[18] Zhihe Liu, Changfeng Wu. Advances in application of materials of super-resolution imaging fluorescent probe. Chinese Optics, 11, 344-362(2018).
[19] X Wu, S Mao, Y Ying, et al. Progress and challenges for live-cell imaging of genomic loci using CRISPR-based platforms. Genomics, Proteomics & Bioinformatics, 17, 119-128(2019).
[20] M E Tanenbaum, L A Gilbert, L S Qi, et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 159, 635-646(2014).
[21] S Shao, L Chang, Y Sun, et al. Multiplexed sgRNA expression allows versatile single nonrepetitive DNA labeling and endogenous gene regulation. ACS Synthetic Biology, 7, 176-186(2018).
[22] N H Sun, D Y Chen, L P Ye, et al. CRISPR-sunspot: Imaging of endogenous low-abundance RNA at the single-molecule level in live cells. Theranostics, 10, 10993-11012(2020).
[23] P Le, N Ahmed, G W Yeo. Illuminating RNA biology through imaging. Nature Cell Biology, 24, 815-824(2022).
[24] [24] Lyu X Y, Deng Y, Huang X Y, et al. CRISPR FISHer enables highsensitivity imaging of nonrepetitive DNA in living cells through phase separationmediated signal amplification [JOL]. Cell Research, (20220914)[20221010]. https:www.nature.comarticless4142202200712z.
[25] H Ma, L C Tu, A Naseri, et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nature Biotechnology, 34, 528-530(2016).
[26] W Deng, X Shi, R Tjian, et al. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proceedings of the National Academy of Sciences of the United States of America, 112, 11870-11875(2015).
[27] J Guan, H Liu, X Shi, et al. Tracking multiple genomic elements using correlative CRISPR imaging and sequential DNA FISH. Biophysical Journal, 112, 1077-1084(2017).
[28] S B Wagh, V A Maslivetc, Clair J J La, et al. Lessons in organic fluorescent probe discovery. Chembiochem, 22, 3109-3139(2021).
[29] S C Knight, L Xie, W Deng, et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science, 350, 823-826(2015).
[30] H Ma, L C Tu, A Naseri, et al. CRISPR-Cas9 nuclear dynamics and target recognition in living cells. The Journal of Cell Biology, 214, 529-537(2016).
[31] Y Liu, K Miao, N P Dunham, et al. The cation-π interaction enables a Halo-Tag fluorogenic probe for fast no-wash live cell imaging and gel-free protein quantification. Biochemistry, 56, 1585-1595(2017).
[32] S Mao, Y Ying, X Wu, et al. CRISPR/dual-FRET molecular beacon for sensitive live-cell imaging of non-repetitive genomic loci. Nucleic Acids Research, 47, e131(2019).
[33] T Ishii, V Schubert, S Khosravi, et al. RNA-guided endonuclease-in situ labelling (RGEN-ISL): a fast CRISPR/Cas9-based method to label genomic sequences in various species. The New Phytologist, 222, 1652-1661(2019).
[34] Y R Kumar, K Deshmukh, K K Sadasivuni, et al. Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review. RSC Advances, 10, 23861-23898(2020).
[35] L Q Chen, S J Xiao, P P Hu, et al. Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics. Analytical Chemistry, 84, 3099-3110(2012).
[36] Y Ma, M Wang, W Li, et al. Live visualization of HIV-1 proviral DNA using a Dual-Color-Labeled CRISPR system. Analytical Chemistry, 89, 12896-12901(2017).
[37] Y B Yang, Y D Tang, Y Hu, et al. Single virus tracking with quantum dots packaged into enveloped viruses using CRISPR. Nano Letters, 20, 1417-1427(2020).
[38] M Asmamaw, B Zawdie. Mechanism and applications of CRISPR/Cas-9-Mediated genome editing. Biologics:Targets & Therapy, 15, 353-361(2021).
[39] D A Nelles, M Y Fang, M R O'connell, et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell, 165, 488-496(2016).
[40] C R Lazzarotto, N L Malinin, Y Li, et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR-Cas9 genome-wide activity. Nature Biotechnology, 38, 1317-1327(2020).
[41] S Nidhi, U Anand, P Oleksak, et al. Novel CRISPR-Cas systems: an updated review of the current achievements, applications, and future research perspectives. International Journal of Molecular Sciences, 22, 3327(2021).
Get Citation
Copy Citation Text
Yue Kang, Xueyao Liao, Xiangyu Tan, Ping Guo, Xun Tian. Advances in live cell imaging technology of CRISPR/Cas9 system (invited)[J]. Infrared and Laser Engineering, 2022, 51(11): 20220597
Category: Special issue-Fluorescence microscopy: techniques and applications
Received: Aug. 19, 2022
Accepted: --
Published Online: Feb. 9, 2023
The Author Email: