Acta Optica Sinica, Volume. 43, Issue 8, 0822006(2023)
Research Progress of Raman Spectroscopy Technology for Deep Space Exploration
[1] Wu W R, Yu D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 1, 5-17(2014).
[2] Ennico K, Shirley M, Colaprete A et al. The lunar crater observation and sensing satellite (LCROSS) payload development and performance in flight[J]. Space Science Reviews, 167, 23-69(2012).
[3] He Z P, Gui Y H, Li J N et al. Spectral imaging for lunar orbit exploration: research status and technical challenges[J]. Acta Optica Sinica, 42, 1730001(2022).
[4] Yang J F, Xue B, Zhao Y Y et al. Design and on-orbit verification of Tianwen-1 multispectral camera[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 52, 239504(2022).
[5] Angel S M, Gomer N R, Sharma S K et al. Remote Raman spectroscopy for planetary exploration: a review[J]. Applied Spectroscopy, 66, 137-150(2012).
[6] Cao H J, Chen J, Fu X H et al. Raman and infrared spectroscopic perspectives of lunar meteorite Northwest Africa 4884[J]. Journal of Raman Spectroscopy, 51, 1652-1666(2020).
[7] Xu W B, Ni P. In situ analysis of mineral assemblages of lunar rocks and soils: application of laser raman spectrometer[C], 452-454(2005).
[8] Yang J M, Zhang H M, Wang X et al. The relationships and differences between the infrared spectrometry and Raman spectrometry[J]. Physics and Engineering, 24, 26-29, 32(2014).
[9] Harris L V. Raman spectroscopy using miniaturised spectrometers in preparation for the 2020 ExoMars rover mission[D](2018).
[10] Wang A L, Jolliff B L, Haskin L A. Raman spectroscopy as a method for mineral identification on lunar robotic exploration missions[J]. Journal of Geophysical Research, 100, 21189-21199(1995).
[11] Haskin L A, Wang A L, Rockow K M et al. Raman spectroscopy for mineral identification and quantification for in situ planetary surface analysis: a point count method[J]. Journal of Geophysical Research: Planets, 102, 19293-19306(1997).
[12] Wang A, Haskin L A, Lane A L et al. Development of the Mars microbeam Raman spectrometer (MMRS)[J]. Journal of Geophysical Research, 108, 5005(2003).
[13] Sharma S K, Misra A K, Clegg S M et al. Remote-Raman spectroscopic study of minerals under supercritical CO2 relevant to Venus exploration[J]. Spectrochimica Acta Part A, 80, 75-81(2011).
[14] Wang A, Wei J, Lambert J L, Hutchinson I et al. A compact integrated Raman spectrometer, CIRS, for fine-scale definitive mineralogy in Venus explorations[C], 1838, 4027(2015).
[15] Wiens R C, Maurice S, Robinson S H et al. The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests[J]. Space Science Reviews, 217, 4(2021).
[16] Bhartia R, Beegle L W, Deflores L et al. Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) investigation[J]. Space Science Reviews, 217, 58(2021).
[18] Carter J C, Angel S M, Lawrence-Snyder M et al. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument[J]. Applied Spectroscopy, 59, 769-775(2005).
[19] Pettersson A, Johansson I, Wallin S et al. Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance[J]. Propellants, Explosives, Pyrotechnics, 34, 297-306(2009).
[20] Sandford M W, Misra A K, Acosta-Maeda T E et al. Detecting minerals and organics relevant to planetary exploration using a compact portable remote Raman system at 122 meters[J]. Applied Spectroscopy, 75, 299-306(2021).
[21] Rull F, Vegas A, Sansano A et al. Analysis of arctic ices by remote Raman spectroscopy[J]. Spectrochimica Acta Part A, 80, 148-155(2011).
[22] Acosta-Maeda T E, Misra A K, Muzangwa L G et al. Remote Raman measurements of minerals, organics, and inorganics at 430 m range[J]. Applied Optics, 55, 10283-10289(2016).
[23] Misra A K, Acosta-Maeda T E, Porter J N et al. Remote Raman detection of chemicals from 1752 m during afternoon daylight[J]. Applied Spectroscopy, 74, 233-240(2020).
[24] Hufziger K T, Bykov S V, Asher S A. Ultraviolet Raman wide-field hyperspectral imaging spectrometer for standoff trace explosive detection[J]. Applied Spectroscopy, 71, 173-185(2017).
[25] Retherford K D, Moore T Z, Raut U et al. Lunar integration cavity Raman ultaviolet spectrograph (Lunar ICARIS) concept[C], 2132, 3141(2019).
[26] Rull F, Maurice S, Hutchinson I et al. The Raman laser spectrometer for the ExoMars rover mission to Mars[J]. Astrobiology, 17, 627-654(2017).
[27] Belenguer T, Fernandez-Rodriguez M, Colombo M et al. A very demanding spectrometer optical design for ExoMars Mission[J]. Proceedings of SPIE, 10565, 105651E(2017).
[28] Veneranda M, Lopez-Reyes G, Saiz J et al. ExoFiT trial at the Atacama Desert (Chile): Raman detection of biomarkers by representative prototypes of the ExoMars/Raman Laser Spectrometer[J]. Scientific Reports, 11, 1461(2021).
[29] Ramos G, Sanz-Palomino M, Moral A G et al. RLS iOH: ExoMars Raman laser spectrometer optical head bread board to flight model design and performance evolutions[J]. Journal of Raman Spectroscopy, 51, 1761-1770(2020).
[30] Cho Y, Böttger U, Rull F et al. In situ science on Phobos with the Raman spectrometer for MMX (RAX): preliminary design and feasibility of Raman measurements[J]. Earth, Planets and Space, 73, 232(2021).
[31] Valette R, Michel P, Ulamec S et al. The MMX rover: performing in situ surface investigations on Phobos[J]. Earth Planets and Space, 74, 2(2022).
[32] Razzell Hollis J, Abbey W, Beegle L W et al. A deep-ultraviolet Raman and fluorescence spectral library of 62 minerals for the SHERLOC instrument onboard Mars 2020[J]. Planetary and Space Science, 209, 105356(2021).
[34] Reess J M, Bonafous M, Lapauw L et al. The SuperCam infrared instrument on the NASA MARS2020 mission: performance and qualification results[J]. Proceedings of SPIE, 11180, 1118037(2018).
[35] Maurice S, Wiens R C, Bernardi P et al. The SuperCam instrument suite on the Mars 2020 rover: science objectives and mast-unit description[J]. Space Science Reviews, 217, 1-108(2021).
[36] Berlanga G, Acosta-Maeda T E, Sharma S K et al. Remote Raman spectroscopy of natural rocks[J]. Applied Optics, 58, 8971-8980(2019).
[37] Czamara K, Majzner K, Pacia M Z et al. Raman spectroscopy of lipids: a review[J]. Journal of Raman spectroscopy, 46, 4-20(2015).
[38] Vítek P, Jehlička J, Edwards H G M et al. The miniaturized Raman system and detection of traces of life in halite from the Atacama Desert: some considerations for the search for life signatures on Mars[J]. Astrobiology, 12, 1095-1099(2012).
[39] Harris L V, Hutchinson I B, Ingley R et al. Selection of portable spectrometers for planetary exploration: a comparison of 532 nm and 785 nm Raman spectroscopy of reduced carbon in Archean cherts[J]. Astrobiology, 15, 420-429(2015).
[40] Li X F, He Y B, Chang L et al. Performance comparison between super second generation and third generation image intensifiers[J]. Infrared Technology, 44, 764-777(2022).
Get Citation
Copy Citation Text
Yiyi Zhao, Bin Xue, Shuaidong Huang, Xinmei Xie, Jianfeng Yang. Research Progress of Raman Spectroscopy Technology for Deep Space Exploration[J]. Acta Optica Sinica, 2023, 43(8): 0822006
Category: Optical Design and Fabrication
Received: Nov. 11, 2022
Accepted: Jan. 3, 2023
Published Online: Apr. 6, 2023
The Author Email: Yang Jianfeng (yangjf@opt.ac.cn)