Acta Optica Sinica, Volume. 43, Issue 8, 0822006(2023)

Research Progress of Raman Spectroscopy Technology for Deep Space Exploration

Yiyi Zhao1,2, Bin Xue1,2, Shuaidong Huang1,2, Xinmei Xie1,2, and Jianfeng Yang1,2、*
Author Affiliations
  • 1Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, Shaanxi , China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(22)
    Principle of Raman scattering
    Composition diagram of Raman spectrometer
    Principle of ICCD
    Time sequence diagram of Raman spectral signal
    Instrument composition of the RLS[26]
    Optical structure and photo of the SPU[26]. (a) Optical structure; (b) object photo
    Optical structure and photo of the iOH[29]. (a) Optical structure; (b) object photo
    Model of the RAX[31]
    Schematic of RAX optical system[30]
    Design model and photo of the AFS[30]. (a) Design model; (b) object photo
    Detection results of the Martian meteorite SaU008 in a simulated Martian environment[16]. (a) Visible light image;(b) fluorescence map; (c) Raman spectroscopy
    SHERLOC composition diagram[16]
    Schematic of SHERLOC optical system[16]
    Spectral image obtained by SCCD[16]
    Schematic of SuperCam instrument[15]
    Optical path of laser emission and signal collection[35]
    Beam splitter assembly[35]
    Diagram of splitting different wavelengths into different spectroscopy
    SuperCam transmission spectrometer[15]. (a) Ray traces in a model of the transmission spectrometer; (b) cutaway rendering of the transmission spectrometer
    Spectral image obtained by ICCD[15]
    Instrument composition of Raman spectrometer of Chang'e-7
    • Table 1. Parameter comparison of five typical Raman spectrometer payloads

      View table

      Table 1. Parameter comparison of five typical Raman spectrometer payloads

      InstrumentRLS26-29RAX30-31SHERLOC1632SuperCam 1533-35Raman spectrometer
      PlatformExoMars(2023)JAXA MMX(2023)Perseverance rover(2020)Chang′e-7(2026)
      Excitation wavelength532 nm532 nm248.6 nm532 nm532 nm
      Continuity of laserContinuousContinuousContinuousPulsePulse
      Spectral range200-3800 cm-1105-4000 cm-1800-4000 cm-1105-4000 cm-1300-6000 cm-1
      Spectral resolution6-8 cm-110 cm-10.269 nm≤12 cm-1≤10 cm-1
      Work environmentIn the cabinUnder the roverOn the robotic armOn the mastOn the rover
      Measuring rangeClose distance78 mm48 mm7-12 m1.2-3.0 m
      Spot diameter50 μm50 μm120 μm5.2-8.9 mm<0.5 mm
      Mass2.4 kg1.4 kg4.72 kg10.8 kg≤6 kg
      Power consumption20-30 W/48.8 W≥56.9 W≤50 W
    Tools

    Get Citation

    Copy Citation Text

    Yiyi Zhao, Bin Xue, Shuaidong Huang, Xinmei Xie, Jianfeng Yang. Research Progress of Raman Spectroscopy Technology for Deep Space Exploration[J]. Acta Optica Sinica, 2023, 43(8): 0822006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Nov. 11, 2022

    Accepted: Jan. 3, 2023

    Published Online: Apr. 6, 2023

    The Author Email: Yang Jianfeng (yangjf@opt.ac.cn)

    DOI:10.3788/AOS221968

    Topics