Acta Optica Sinica, Volume. 42, Issue 10, 1012005(2022)
Micro-Force Optical Coherence Elastography for in vivo Corneal Natural Frequency Measurement
[1] Brown K E, Congdon N G. Corneal structure and biomechanics: impact on the diagnosis and management of glaucoma[J]. Current Opinion in Ophthalmology, 17, 338-343(2006).
[2] Salomão M Q. Hofling-Lima A L, Esporcatte L P G, et al. The role of corneal biomechanics for the evaluation of ectasia patients[J]. International Journal of Environmental Research and Public Health, 17, 2113(2020).
[3] Burton M J, Ramke J, Marques A P et al. The Lancet Global Health Commission on global eye health: vision beyond 2020[J]. The Lancet Global Health Commission, 9, e489-e551(2021).
[4] Godefrooij D A, de Wit G A, Uiterwaal C S et al. Age-specific incidence and prevalence of keratoconus: a nationwide registration study[J]. American Journal of Ophthalmology, 175, 169-172(2017).
[5] Kim T I, Wilkins M et al. Refractive surgery[J]. The Lancet, 393, 2085-2098(2019).
[6] Lan G P, Zeng J, Li W J et al. Customized eye modeling for optical quality assessment in myopic femto-LASIK surgery[J]. Scientific Reports, 11, 16049(2021).
[7] Mazzotta C, Traversi C, Baiocchi S et al. Corneal collagen cross-linking with riboflavin and ultraviolet a light for pediatric keratoconus: ten-year results[J]. Cornea, 37, 560-566(2018).
[8] Sarvazyan A, Hall T J, Urban M W et al. An overview of elastography: an emerging branch of medical imaging[J]. Current Medical Imaging Reviews, 7, 255-282(2011).
[9] Nightingale K. McAleavey S, Trahey G. Shear-wave generation using acoustic radiation force: in vivo and ex vivo results[J]. Ultrasound in Medicine & Biology, 29, 1715-1723(2003).
[10] Manduca A, Oliphant T E, Dresner M A et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity[J]. Medical Image Analysis, 5, 237-254(2001).
[11] Righetti R, Ophir J, Ktonas P. Axial resolution in elastography[J]. Ultrasound in Medicine & Biology, 28, 101-113(2002).
[12] Dong X, Huang L P. Research advances in the value of ultrasound elastography in the diagnosis of gastroesophageal varices in patients with liver cirrhosis[J]. Journal of Clinical Hepatology, 34, 2424-2427(2018).
[13] Samani A, Zubovits J, Plewes D. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples[J]. Physics in Medicine and Biology, 52, 1565-1576(2007).
[14] Ruberti J W, Sinha Roy A, Roberts C J. Corneal biomechanics and biomaterials[J]. Annual Review of Biomedical Engineering, 13, 269-295(2011).
[15] Schmitt J M. OCT elastography: imaging microscopic deformation and strain of tissue[J]. Optics Express, 3, 199-211(1998).
[16] Han T, Qiu J R, Wang D et al. Optical coherence microscopy and its application[J]. Chinese Journal of Lasers, 47, 0207004(2020).
[17] Liu T G, Tao K Y, Ding Z Y et al. Coronary stent reconstruction in intravascular optical coherence tomography[J]. Acta Optica Sinica, 41, 0417001(2021).
[18] Wei Y Z, Yuan X, Lan G P et al. Research progress and application of cardiovascular optical coherence tomography[J]. Laser & Optoelectronics Progress, 58, 2400002(2021).
[19] Jerwick J, Huang Y Y, Dong Z et al. Wide-field ophthalmic space-division multiplexing optical coherence tomography[J]. Photonics Research, 8, 539-547(2020).
[20] Lan G P, Aglyamov S R, Larin K V et al. In vivo human corneal shear-wave optical coherence elastography[J]. Optometry and Vision Science, 98, 58-63(2021).
[21] Song S Z, Huang Z H, Nguyen T M et al. Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 18, 121509(2013).
[22] Wang S, Larin K V. Optical coherence elastography for tissue characterization: a review[J]. Journal of Biophotonics, 8, 279-302(2015).
[23] Wang Y C, Li W J, Huang Y P et al. Advances in optical coherence elastography[J]. Laser & Optoelectronics Progress, 58, 1400003(2021).
[24] Rogowska J, Patel N A, Fujimoto J G et al. Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues[J]. Heart (British Cardiac Society), 90, 556-562(2004).
[25] Lan G P, Singh M, Larin K V et al. Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography[J]. Biomedical Optics Express, 8, 5253-5266(2017).
[26] Pelivanov I, Gao L, Pitre J et al. Does group velocity always reflect elastic modulus in shear wave elastography?[J]. Journal of Biomedical Optics, 24, 076003(2019).
[27] Han Z L, Aglyamov S R, Li J S et al. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation[J]. Journal of Biomedical Optics, 20, 020501(2015).
[28] Qi W J, Li R, Ma T et al. Resonant acoustic radiation force optical coherence elastography[J]. Applied Physics Letters, 103, 103704(2013).
[29] Akca B I, Chang E W, Kling S et al. Observation of sound-induced corneal vibrational modes by optical coherence tomography[J]. Biomedical Optics Express, 6, 3313-3319(2015).
[30] Wu C, Han Z L, Wang S et al. Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system[J]. Investigative Ophthalmology & Visual Science, 56, 1292-1300(2015).
[31] Lan G P, Larin K V, Aglyamov S et al. Characterization of natural frequencies from nanoscale tissue oscillations using dynamic optical coherence elastography[J]. Biomedical Optics Express, 11, 3301-3318(2020).
[32] Ma W W, Zhou Y Q[M]. Physics, 131-133(2016).
[33] Crecea V, Oldenburg A L, Liang X et al. Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials[J]. Optics Express, 17, 23114-23122(2009).
[34] Wang S, Aglyamov S, Karpiouk A et al. Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens[J]. Biomedical Optics Express, 4, 2769-2780(2013).
[35] Oldenburg A L, Boppart S A. Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography[J]. Physics in Medicine and Biology, 55, 1189-1201(2010).
[36] Wang S, Larin K V, Li J S et al. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity[J]. Laser Physics Letters, 10, 075605(2013).
[37] Luce D A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer[J]. Journal of Cataract & Refractive Surgery, 31, 156-162(2005).
[38] Hong J X, Xu J J, Wei A J et al. A new tonometer—the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers[J]. Investigative Ophthalmology & Visual Science, 54, 659-665(2013).
[39] Jiménez-Villar A. Mᶏczyńska E, Cichański A, et al. High-speed OCT-based ocular biometer combined with an air-puff system for determination of induced retraction-free eye dynamics[J]. Biomedical Optics Express, 10, 3663-3680(2019).
[40] Wang L K, Zhang J Y, Tian L et al. OCT based air jet indentation for corneal biomechanical assessment[J]. Optics and Precision Engineering, 23, 325-333(2015).
[41] Huang Y P, Wang S Z, Zheng Y P. OCT-based air-jet indentation system and applications: detection of change of stiffness in articular cartilage[J]. China Medical Devices, 26, 17-21(2011).
[42] Wu C, Aglyamov S R, Han Z L et al. Assessing the biomechanical properties of the porcine crystalline lens as a function of intraocular pressure with optical coherence elastography[J]. Biomedical Optics Express, 9, 6455-6466(2018).
[43] Lan G P, Aglyamov S, Larin K V et al. In vivo human corneal natural frequency quantification using dynamic optical coherence elastography: repeatability and reproducibility[J]. Journal of Biomechanics, 121, 110427(2021).
[44] Singh M, Li J S, Vantipalli S et al. Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking[J]. Journal of Biomedical Optics, 22, 091504(2017).
[45] Li J S, Wang S, Manapuram R K et al. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo[J]. Journal of Biomedical Optics, 18, 121503(2013).
[46] Lan G P, Gu B Y, Larin K V et al. Clinical corneal optical coherence elastography measurement precision: effect of heartbeat and respiration[J]. Translational Vision Science & Technology, 9, 3(2020).
[47] Lan G P, Li G Q. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography[J]. Scientific Reports, 7, 42353(2017).
[48] Hu Z L, Rollins A M. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer[J]. Optics Letters, 32, 3525-3527(2007).
[49] Lan G P, Xu J J, Hu Z L et al. Design of 1300 nm spectral domain optical coherence tomography angiography system for iris microvascular imaging[J]. Journal of Physics D, 54, 264002(2021).
[50] Kirkpatrick S J, Wang R K, Duncan D D. OCT-based elastography for large and small deformations[J]. Optics Express, 14, 11585-11597(2006).
[51] Park B H, Pierce M C, Cense B et al. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm[J]. Optics Express, 13, 3931-3944(2005).
[52] Han Z L, Li J S, Singh M et al. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study[J]. Physics in Medicine and Biology, 60, 3531-3547(2015).
[53] Voorhees A P, Ho L C, Jan N J et al. Whole-globe biomechanics using high-field MRI[J]. Experimental Eye Research, 160, 85-95(2017).
[54] Pavlatos E, Chen H, Clayson K et al. Imaging corneal biomechanical responses to ocular pulse using high-frequency ultrasound[J]. IEEE Transactions on Medical Imaging, 37, 663-670(2018).
[55] Scarcelli G, Yun S H. Confocal brillouin microscopy for three-dimensional mechanical imaging[J]. Nature Photonics, 2, 39-43(2007).
[56] Scarcelli G, Pineda R, Yun S H. Brillouin optical microscopy for corneal biomechanics[J]. Investigative Ophthalmology & Visual Science, 53, 185-190(2012).
[57] Bak-Nielsen S, Pedersen I B, Ivarsen A et al. Dynamic scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking[J]. Journal of Refractive Surgery, 30, 408-414(2014).
[58] Gkika M, Labiris G, Giarmoukakis A et al. Evaluation of corneal hysteresis and corneal resistance factor after corneal cross-linking for keratoconus[J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 250, 565-573(2012).
[59] Greenstein S A, Fry K L, Hersh P S. In vivo biomechanical changes after corneal collagen cross-linking for keratoconus and corneal ectasia: 1-year analysis of a randomized, controlled, clinical trial[J]. Cornea, 31, 21-25(2012).
[60] Goldich Y, Barkana Y, Morad Y et al. Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?—a pilot study[J]. Cornea, 28, 498-502(2009).
[61] Maczynska E, Rzeszewska-Zamiara J, Jimenez Villar A et al. Air-puff-induced dynamics of ocular components measured with optical biometry[J]. Investigative Ophthalmology & Visual Science, 60, 1979-1986(2019).
Get Citation
Copy Citation Text
Qun Shi, Jinping Feng, Ye Zheng, Yicheng Wang, Guoqin Ma, Jia Qin, Lin An, Yanping Huang, Jingjiang Xu, Jing Cai, Yue Shi, Chongke Ji, Gongpu Lan. Micro-Force Optical Coherence Elastography for in vivo Corneal Natural Frequency Measurement[J]. Acta Optica Sinica, 2022, 42(10): 1012005
Category: Instrumentation, Measurement and Metrology
Received: Nov. 2, 2021
Accepted: Dec. 23, 2021
Published Online: May. 10, 2022
The Author Email: Lan Gongpu (langongpu@fosu.edu.cn)