Chinese Journal of Lasers, Volume. 50, Issue 12, 1202401(2023)

Femtosecond Laser Texturing Process for NCM811 Thick Film Cathodes in Lithium Ion Batteryies

Songyuan Li, Li Cao, Jingbo Wang, Rongshi Xiao, and Ting Huang*
Author Affiliations
  • Intelligent Photon Manufacturing Research Center, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • show less
    References(25)

    [1] Dunlap N, Sulas-Kern D B, Weddle P J et al. Laser ablation for structuring Li-ion electrodes for fast charging and its impact on material properties, rate capability, Li plating, and wetting[J]. Journal of Power Sources, 537, 231464(2022).

    [2] Song Z L, Zhu P H, Pfleging W et al. Electrochemical performance of thick-film Li (Ni0.6Mn0.2Co0.2)O2 cathode with hierarchic structures and laser ablation[J]. Nanomaterials, 11, 2962(2021).

    [3] Xu C Y, Li Q, Wang Q Z et al. Femtosecond laser drilled micro-hole arrays in thick and dense 2D nanomaterial electrodes toward high volumetric capacity and rate performance[J]. Journal of Power Sources, 492, 229638(2021).

    [4] Zhu P H, Seifert H J, Pfleging W. The ultrafast laser ablation of Li(Ni0.6Mn0.2Co0.2)O2 electrodes with high mass loading[J]. Applied Sciences, 9, 4067(2019).

    [5] Park J, Jeon C, Kim W et al. Challenges, laser processing and electrochemical characteristics on application of ultra-thick electrode for high-energy lithium-ion battery[J]. Journal of Power Sources, 482, 228948(2021).

    [6] Pfleging W, Gotcu P. Femtosecond laser processing of thick film cathodes and its impact on lithium-ion diffusion kinetics[J]. Applied Sciences, 9, 3588(2019).

    [7] Zheng Y, Seifert H J, Shi H et al. 3D silicon/graphite composite electrodes for high-energy lithium-ion batteries[J]. Electrochimica Acta, 317, 502-508(2019).

    [8] Yong E Y, Yang Q, Chen F et al. Femtosecond laser-induced superwetting surfaces[J]. Chinese Science Bulletin, 64, 1213-1237(2019).

    [9] Huang C L, Jiang Q, Lin X C et al. Characteristics of green femtosecond laser etching of GH3230 superalloy[J]. Chinese Journal of Lasers, 50, 0802017(2023).

    [10] Cui M Y, Huang T, Xiao R S. Femtosecond laser direct writing of copper microstructures with high efficiency via thermal effect of nanoparticles[J]. Chinese Journal of Lasers, 49, 0802015(2022).

    [11] Yu M, Huang T, Xiao R S. Long focal length green femtosecond laser welding of glass[J]. Chinese Journal of Lasers, 47, 0902005(2020).

    [12] Mangang M, Seifert H J, Pfleging W. Influence of laser pulse duration on the electrochemical performance of laser structured LiFePO4 composite electrodes[J]. Journal of Power Sources, 304, 24-32(2016).

    [13] Park J, Song H, Jang I et al. Three-dimensionalization via control of laser-structuring parameters for high energy and high power lithium-ion battery under various operating conditions[J]. Journal of Energy Chemistry, 64, 93-102(2022).

    [14] Smyrek P, Pröll J, Rakebrandt J H et al. Manufacturing of advanced Li(NiMnCo)O2 electrodes for lithium-ion batteries[J]. Proceedings of SPIE, 9351, 93511D(2015).

    [15] Matsumoto F, Yamada M, Tsuta M et al. Review of the structure and performance of through-holed anodes and cathodes prepared with a picosecond pulsed laser for lithium-ion batteries[J]. International Journal of Extreme Manufacturing, 5, 012001(2023).

    [16] Habedank J B, Endres J, Schmitz P et al. Femtosecond laser structuring of graphite anodes for improved lithium-ion batteries: ablation characteristics and process design[J]. Journal of Laser Applications, 30, 032205(2018).

    [17] Cabana J, Kwon B J, Hu L H. Mechanisms of degradation and strategies for the stabilization of cathode-electrolyte interfaces in Li-ion batteries[J]. Accounts of Chemical Research, 51, 299-308(2018).

    [18] Wang Y Q, Yang Z Z, Qian Y M et al. New insights into improving rate performance of lithium-rich cathode material[J]. Advanced Materials, 27, 3915-3920(2015).

    [19] Yang H P, Wu H H, Ge M Y et al. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries[J]. Advanced Functional Materials, 29, 1808825(2019).

    [20] Pedaballi S, Li C C. Effects of surface modification and organic binder type on cell performance of water-processed Ni-rich Li(Ni0.8Co0.1Mn0.1)O2 cathodes[J]. Journal of Power Sources, 472, 228552(2020).

    [21] Li X, Zhang K J, Wang M S et al. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2[J]. Sustainable Energy & Fuels, 2, 413-421(2018).

    [22] Kim J H, Kim H, Kim W J et al. Incorporation of titanium into Ni-rich layered cathode materials for lithium-ion batteries[J]. ACS Applied Energy Materials, 3, 12204-12211(2020).

    [23] He Y L, Li Y, Liu Y et al. Al-doped ZnO (AZO) modified LiNi0.8Co0.1Mn0.1O2 and their performance as cathode material for lithium ion batteries[J]. Materials Chemistry and Physics, 251, 123085(2020).

    [24] Zhang X Y, Jiang W J, Mauger A et al. Minimization of the cation mixing in Li1+x(NMC)1-xO2 as cathode material[J]. Journal of Power Sources, 195, 1292-1301(2010).

    [25] Mangang M, Pröll J, Tarde C et al. Ultrafast laser microstructuring of LiFePO4 cathode material[J]. Proceedings of SPIE, 8968, 89680M(2014).

    Tools

    Get Citation

    Copy Citation Text

    Songyuan Li, Li Cao, Jingbo Wang, Rongshi Xiao, Ting Huang. Femtosecond Laser Texturing Process for NCM811 Thick Film Cathodes in Lithium Ion Batteryies[J]. Chinese Journal of Lasers, 2023, 50(12): 1202401

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Micro-Nano Manufacturing

    Received: Nov. 25, 2022

    Accepted: Feb. 6, 2023

    Published Online: Jun. 6, 2023

    The Author Email: Huang Ting (huangting@bjut.edu.cn)

    DOI:10.3788/CJL221455

    Topics