Acta Optica Sinica, Volume. 43, Issue 23, 2315001(2023)

Lithography Hotspot Detection Based on Improved YOLOv3

Mu Lin, Fanwenqing Zeng, Xiaoxuan Liu, Fencheng Li, Jun Luo, and Yijiang Shen*
Author Affiliations
  • School of Automation, Guangdong University of Technology, Guangzhou 510006, Guangdong , China
  • show less
    Figures & Tables(12)
    Hotspot detection task, the left figure is the mask, the block area on the right is the hotspot area
    Structure of YOLOv3
    Structure of squeeze, excitation, and scale modules in the SENet
    YOLOv3 improved model structure
    Flip of data augmention method
    Loss curves of two different methods to train benchmark 2
    Results of using YOLOv3 after training to detect lithography hotspots. (a) Original mask; (b) output image of the model
    • Table 1. Data of ICCAD 2012 dataset

      View table

      Table 1. Data of ICCAD 2012 dataset

      NameTech /nmTraining datasetTesting dataset
      HSNHSHSArea /nm2
      Benchmark 1329934022612516
      Benchmark 2281745285498106954
      Benchmark 32890546421796122565
      Benchmark 42895445317782010
      Benchmark 5282627164149583
      Benchmark 6281200170962512361112
    • Table 2. Dataset after data augmentation

      View table

      Table 2. Dataset after data augmentation

      NameTech /nmTraining datasetValidation datasetTesting dataset
      HSNHSHSNHSHSArea /nm2
      Benchmark 13274325793314122612516
      Benchmark 22812514776141509498106954
      Benchmark 32864213342872837081796122565
      Benchmark 42867340137944017782010
      Benchmark 5281872445212714149583
      Benchmark 62886161537894817182512361112
    • Table 3. Experimental result

      View table

      Table 3. Experimental result

      NameMethodRecallRrecisionF1
      Benchmark 1YOLOv31.000.970.98
      YOLOv3+SENet1.000.980.99
      Benchmark 2YOLOv31.001.001.00
      YOLOv3+SENet1.001.001.00
      Benchmark 3YOLOv31.000.380.55
      YOLOv3+SENet1.000.440.61
      Benchmark 4YOLOv31.000.980.99
      YOLOv3+SENet1.000.970.98
      Benchmark 5YOLOv31.000.930.965
      YOLOv3+SENet1.001.001.00
      Benchmark 6YOLOv31.000.350.52
      YOLOv3+SENet1.000.450.62
    • Table 4. Experimental result for different attention mechanisms

      View table

      Table 4. Experimental result for different attention mechanisms

      NameMethodRecallRrecisionF1
      Benchmark 1YOLOv3+CBAM1.001.001.00
      YOLOv3+SENet1.000.980.99
      Benchmark 2YOLOv3+CBAM1.000.930.97
      YOLOv3+SENet1.001.001.00
      Benchmark 3YOLOv3+CBAM1.000.440.61
      YOLOv3+SENet1.000.440.61
      Benchmark 4YOLOv3+CBAM1.000.510.68
      YOLOv3+SENet1.000.970.98
      Benchmark 5YOLOv3+CBAM1.001.001.00
      YOLOv3+SENet1.001.001.00
      Benchmark 6YOLOv3+CBAM1.000.240.38
      YOLOv3+SENet1.000.450.62
    • Table 5. Comparison of experimental results of different methods

      View table

      Table 5. Comparison of experimental results of different methods

      NameMethodRecallPrecisionF1
      Benchmark 1Method in Ref.[90.950.360.52
      Method in Ref.[141.000.320.49
      YOLOv3+SENet1.000.980.99
      Benchmark 2Method in Ref.[90.980.220.35
      Method in Ref.[140.990.700.82
      YOLOv3+SENet1.001.001.00
      Benchmark 3Method in Ref.[90.980.200.33
      Method in Ref.[140.980.440.64
      YOLOv3+SENet1.000.440.61
      Benchmark 4Method in Ref.[90.940.160.27
      Method in Ref.[140.970.360.52
      YOLOv3+SENet1.000.970.98
      Benchmark 5Method in Ref.[90.980.180.30
      Method in Ref.[141.000.550.70
      YOLOv3+SENet1.001.001.00
      Benchmark 6Method in Ref.[90.960.220.35
      Method in Ref.[140.980.480.64
      YOLOv3+SENet1.000.450.62
    Tools

    Get Citation

    Copy Citation Text

    Mu Lin, Fanwenqing Zeng, Xiaoxuan Liu, Fencheng Li, Jun Luo, Yijiang Shen. Lithography Hotspot Detection Based on Improved YOLOv3[J]. Acta Optica Sinica, 2023, 43(23): 2315001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: May. 5, 2023

    Accepted: Aug. 29, 2023

    Published Online: Dec. 8, 2023

    The Author Email: Yijiang Shen (yjshen@gdut.edu.cn)

    DOI:10.3788/AOS230928

    Topics