Chinese Journal of Lasers, Volume. 49, Issue 10, 1002504(2022)

Femtosecond Laser Direct Writing for Eternal Data Storage: Advances and Challenges

Lei Wang1, Xu Zhang1, Yi Wang2, Lin Wang1, Qing Wang1, Xue Zang1, Ruifan Li3, Yishi Xu1, Zhenze Li1, and Qidai Chen1、*
Author Affiliations
  • 1College of Electronic Science and Engineering, State Key Laboratory of Integrated Optoelectronics, Jilin University, Changchun 130012, Jilin, China
  • 2Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
  • 3College of Material Science and Engineering, Jilin University, Changchun 130012, Jilin, China
  • show less
    References(105)

    [1] Xu D Y[M]. Multi-dimensional optical storage, 16-21(2016).

    [2] Trelles O, Prins P, Snir M et al. Big data, but are we ready?[J]. Nature Reviews Genetics, 12, 224(2011).

    [3] Gu M, Li X, Cao Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 3, e177(2014).

    [4] Levandoski J J, Larson P Å, Stoica R[C], 26-37(2013).

    [6] Jiang M L, Zhang M S, Li X P et al. Research progress of super-resolution optical data storage[J]. Opto-Electronic Engineering, 46, 180649(2019).

    [7] Fleischer A S. Cooling our insatiable demand for data[J]. Science, 370, 783-784(2020).

    [8] Gu M, Li X P. The road to multi-dimensional bit-by-bit optical data storage[J]. Optics and Photonics News, 21, 28-33(2010).

    [9] Liu Z W, Lee H, Xiong Y et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 315, 1686(2007).

    [10] van de Nes A S, Braat J M, Pereira S F. High-density optical data storage[J]. Reports on Progress in Physics, 69, 2323-2363(2006).

    [11] Dee R H. Magnetic tape for data storage: an enduring technology[J]. Proceedings of the IEEE, 96, 1775-1785(2008).

    [12] Gu M, Zhang Q, Lamon S. Nanomaterials for optical data storage[J]. Nature Reviews Materials, 1, 16070(2016).

    [16] Shiroishi Y, Fukuda K, Tagawa I et al. Future options for HDD storage[J]. IEEE Transactions on Magnetics, 45, 3816-3822(2009).

    [19] Zhang J Y, Gecevičius M, Beresna M et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Physical Review Letters, 112, 033901(2014).

    [20] Hong M H, Luk’yanchuk B, Huang S M et al. Femtosecond laser application for high capacity optical data storage[J]. Applied Physics A, 79, 791-794(2004).

    [21] Masanet E, Shehabi A, Lei N A et al. Recalibrating global data center energy-use estimates[J]. Science, 367, 984-986(2020).

    [22] Lin X, Liu J P, Hao J Y et al. Collinear holographic data storage technologies[J]. Opto-Electronic Advances, 3, 190004(2020).

    [23] Bruder F K, Hagen R, Rölle T et al. From the surface to volume: concepts for the next generation of optical-holographic data-storage materials[J]. Angewandte Chemie International Edition, 50, 4552-4573(2011).

    [24] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 459, 410-413(2009).

    [25] Li X, Zhang Q, Chen X et al. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording[J]. Scientific Reports, 3, 2819(2013).

    [26] Dallari W, Scotto d’Abbusco M, Zanella M et al. Light-induced inhibition of photoluminescence emission of core/shell semiconductor nanorods and its application for optical data storage[J]. The Journal of Physical Chemistry C, 116, 25576-25580(2012).

    [27] Lu Y, Zhao J, Zhang R et al. Tunable lifetime multiplexing using luminescent nanocrystals[J]. Nature Photonics, 8, 32-36(2014).

    [28] Zhu L W, Cao Y Y, Chen Q Q et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods[J]. Opto-Electronic Advances, 4, 210002(2021).

    [29] Dai Q F, Min O Y, Yuan W G et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory[J]. Advanced Materials, 29, 1701918(2017).

    [30] Ouyang X, Xu Y, Xian M et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J]. Nature Photonics, 15, 901-907(2021).

    [31] Li X, Ren H, Chen X et al. Athermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nature Communications, 6, 6984(2015).

    [32] Wang S C, Ouyang X, Feng Z W et al. Diffractive photonic applications mediated by laser reduced graphene oxides[J]. Opto-Electronic Advances, 1, 170002(2018).

    [33] Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory[J]. Science, 245, 843-845(1989).

    [34] Li X P, Chon J W M, Wu S H et al. Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer[J]. Optics Letters, 32, 277-279(2007).

    [35] Buse K, Adibi A, Psaltis D. Non-volatile holographic storage in doubly doped lithium niobate crystals[J]. Nature, 393, 665-668(1998).

    [36] Wang L, Fan H, Li Z Z et al. Fabrication of time capsules by femtosecond laser-induced birefringence[J]. Acta Photonica Sinica, 50, 0650105(2021).

    [37] Du D, Liu X, Korn G et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Applied Physics Letters, 64, 3071-3073(1994).

    [38] Joglekar A P, Liu H H, Meyhöfer E et al. Optics at critical intensity: applications to nanomorphing[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 5856-5861(2004).

    [39] von der Linde D, Sokolowski-Tinten K, Bialkowski J. Laser-solid interaction in the femtosecond time regime[J]. Applied Surface Science, 109/110, 1-10(1997).

    [40] Maine P, Strickland D, Bado P et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE Journal of Quantum Electronics, 24, 398-403(1988).

    [41] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 1, 217-224(2002).

    [42] Schaffer C B, Brodeur A, Mazur E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses[J]. Measurement Science and Technology, 12, 1784-1794(2001).

    [43] Bloembergen N. Laser-induced electric breakdown in solids[J]. IEEE Journal of Quantum Electronics, 10, 375-386(1974).

    [44] Della Valle G, Osellame R, Laporta P. Micromachining of photonic devices by femtosecond laser pulses[J]. Journal of Optics A, 11, 013001(2009).

    [45] Li X B, Liu X Q, Liu X et al. Role of electronic excitation in the amorphization of Ge-Sb-Te alloys[J]. Physical Review Letters, 107, 015501(2011).

    [46] Chichkov B N, Momma C, Nolte S et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 63, 109-115(1996).

    [47] Chen T, Wang W J, Tao T et al. Deposition and melting behaviors for formation of micro/nano structures from nanostructures with femtosecond pulses[J]. Optical Materials, 78, 380-387(2018).

    [48] Rayner D, Naumov A, Corkum P. Ultrashort pulse non-linear optical absorption in transparent media[J]. Optics Express, 13, 3208-3217(2005).

    [49] Zhou Q L, Liu L Y, Xu L et al. Femtosecond laser induced darkening and refractive index change in K9 glass[J]. Chinese Journal of Lasers, 32, 119-122(2005).

    [50] Miura K, Qiu J R, Inouye H et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser[J]. Applied Physics Letters, 71, 3329-3331(1997).

    [51] Shimizu M, Sakakura M, Kanehira S et al. Formation mechanism of element distribution in glass under femtosecond laser irradiation[J]. Optics Letters, 36, 2161-2163(2011).

    [52] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass[J]. Laser & Photonics Reviews, 2, 26-46(2008).

    [53] Glezer E N, Mazur E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters, 71, 882-884(1997).

    [54] Juodkazis S, Misawa H, Hashimoto T et al. Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids[J]. Applied Physics Letters, 88, 201909(2006).

    [55] Sundaram S K, Schaffer C B, Mazur E. Microexplosions in tellurite glasses[J]. Applied Physics A, 76, 379-384(2003).

    [56] Bhardwaj V R, Simova E, Rajeev P P et al. Optically produced arrays of planar nanostructures inside fused silica[J]. Physical Review Letters, 96, 057404(2006).

    [57] Liao Y, Shen Y L, Qiao L L et al. Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes[J]. Optics Letters, 38, 187-189(2013).

    [58] Toratani E, Kamata M, Obara M. Self-fabrication of void array in fused silica by femtosecond laser processing[J]. Applied Physics Letters, 87, 171103(2005).

    [59] Gaizauskas E, Vanagas E, Jarutis V et al. Discrete damage traces from filamentation of Gauss-Bessel pulses[J]. Optics Letters, 31, 80-82(2006).

    [60] Sun K, Sun S Z, Qiu J R. Review on research progress of glasses used for optical storage[J]. Laser & Optoelectronics Progress, 57, 111407(2020).

    [61] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).

    [62] Gorelik T, Will M, Nolte S et al. Transmission electron microscopy studies of femtosecond laser induced modifications in quartz[J]. Applied Physics A, 76, 309-311(2003).

    [63] Ams M, Marshall G, Spence D et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses[J]. Optics Express, 13, 5676-5681(2005).

    [64] Tong L M, Gattass R R, Maxwell I et al. Optical loss measurements in femtosecond laser written waveguides in glass[J]. Optics Communications, 259, 626-630(2006).

    [65] Meany T, Gräfe M, Heilmann R et al. Laser written circuits for quantum photonics[J]. Laser & Photonics Reviews, 9, 363-384(2015).

    [66] Glezer E N, Milosavljevic M, Huang L et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 21, 2023-2025(1996).

    [67] Sun H B, Xu Y, Juodkazis S et al. Arbitrary-lattice photonic crystals created by multiphoton microfabrication[J]. Optics Letters, 26, 325-327(2001).

    [68] Juodkazis S, Nishimura K, Tanaka S et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures[J]. Physical Review Letters, 96, 166101(2006).

    [69] Huang J, Jiang L, Li X W et al. Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification[J]. Nanophotonics, 8, 869-878(2019).

    [70] Cheng G H, Wang Y S, White J D et al. Demonstration of high-density three-dimensional storage in fused silica by femtosecond laser pulses[J]. Journal of Applied Physics, 94, 1304-1307(2003).

    [73] Kazansky P G, Inouye H, Mitsuyu T et al. Anomalous anisotropic light scattering in Ge-doped silica glass[J]. Physical Review Letters, 82, 2199-2202(1999).

    [74] Qiu J R, Kazanski P G, Si J H et al. Memorized polarization-dependent light scattering in rare-earth-ion-doped glass[J]. Applied Physics Letters, 77, 1940-1942(2000).

    [75] Sudrie L, Franco M, Prade B et al. Study of damage in fused silica induced by ultra-short IR laser pulses[J]. Optics Communications, 191, 333-339(2001).

    [76] Shimotsuma Y, Kazansky P G, Qiu J R et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 91, 247405(2003).

    [77] Bricchi E, Klappauf B G, Kazansky P G. Form birefringence and negative index change created by femtosecond direct writing in transparent materials[J]. Optics Letters, 29, 119-121(2004).

    [78] Mills J D, Kazansky P G, Bricchi E et al. Embedded anisotropic microreflectors by femtosecond-laser nanomachining[J]. Applied Physics Letters, 81, 196-198(2002).

    [79] Yang W J, Bricchi E, Kazansky P G et al. Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing[J]. Optics Express, 14, 10117-10124(2006).

    [80] Taylor R S, Hnatovsky C, Simova E et al. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass[J]. Optics Letters, 32, 2888-2890(2007).

    [81] Tsujioka T, Hamada Y, Shibata K et al. Nondestructive readout of photochromic optical memory using photocurrent detection[J]. Applied Physics Letters, 78, 2282-2284(2001).

    [82] Richter S, Heinrich M, Döring S et al. Nanogratings in fused silica: formation, control, and applications[J]. Journal of Laser Applications, 24, 042008(2012).

    [83] Mihailov S J, Smelser C W, Grobnic D et al. Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask[J]. Journal of Lightwave Technology, 22, 94-100(2004).

    [84] Shimotsuma Y, Sakakura M, Kazansky P G et al. Ultrafast manipulation of self-assembled form birefringence in glass[J]. Advanced Materials, 22, 4039-4043(2010).

    [85] Huang M, Zhao F L, Cheng Y et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J]. ACS Nano, 3, 4062-4070(2009).

    [86] Dai Y, Qiu J R. Research progress of single beam femtosecond laser direct writing self-organized nanogratings in fused silica[J]. Laser & Optoelectronics Progress, 50, 120002(2013).

    [87] Rajeev P P, Gertsvolf M, Hnatovsky C et al. Transient nanoplasmonics inside dielectrics[J]. Journal of Physics B, 40, S273-S282(2007).

    [88] Richter S, Heinrich M, Döring S et al. Formation of femtosecond laser-induced nanogratings at high repetition rates[J]. Applied Physics A, 104, 503-507(2011).

    [89] Dai Y, Wu G R, Lin X et al. Femtosecond laser induced rotated 3D self-organized nanograting in fused silica[J]. Optics Express, 20, 18072-18078(2012).

    [90] Cao W, Jiang L, Hu J et al. Optical field enhancement in Au nanoparticle-decorated nanorod arrays prepared by femtosecond laser and their tunable surface-enhanced Raman scattering applications[J]. ACS Applied Materials & Interfaces, 10, 1297-1305(2018).

    [91] Martin P, Guizard S, Daguzan P et al. Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals[J]. Physical Review B, 55, 5799-5810(1997).

    [92] Petite G, Daguzan P, Guizard S et al. Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study[J]. Nuclear Instruments and Methods in Physics Research Section B, 107, 97-101(1996).

    [93] Mao S S, Quéré F, Guizard S et al. Dynamics of femtosecond laser interactions with dielectrics[J]. Applied Physics A, 79, 1695-1709(2004).

    [94] Song K, Williams R T[M]. Self-trapped excitons(2013).

    [95] Wang H D, Song J, Li Q et al. Formation of nanograting in fused silica by temporally delayed femtosecond double-pulse irradiation[J]. Journal of Physics D, 51, 155101(2018).

    [96] Liao Y, Ni J L, Qiao L L et al. High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation[J]. Optica, 2, 329-334(2015).

    [97] Zimmermann F, Plech A, Richter S et al. The onset of ultrashort pulse-induced nanogratings[J]. Laser & Photonics Reviews, 10, 327-334(2016).

    [98] Rudenko A, Ma H F, Veiko V P et al. On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses[J]. Applied Physics A, 124, 1-11(2017).

    [99] Sakakura M, Lei Y, Wang L et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass[J]. Light: Science & Applications, 9, 15(2020).

    [100] Cox A J, DeWeerd A J, Linden J. An experiment to measure Mie and Rayleigh total scattering cross sections[J]. American Journal of Physics, 70, 620-625(2002).

    [101] Lei Y H, Sakakura M, Wang L et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement[J]. Optica, 8, 1365-1371(2021).

    [102] Fang H H, Lu S Y, Zhan X P et al. Low threshold melt-processed two-photon organic surface emitting upconversion lasers[J]. Organic Electronics, 14, 762-767(2013).

    [103] Shribak M, Oldenbourg R. Techniques for fast and sensitive measurements of two-dimensional birefringence distributions[J]. Applied Optics, 42, 3009-3017(2003).

    [104] Li Y D, Yin W Y, Dai Y. Research progress on spatio-temporal coupling of femtosecond pulse laser for direct-writing nanograting[J]. Laser & Optoelectronics Progress, 57, 111403(2020).

    [105] Sun B S, Salter P S, Roider C et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time[J]. Light: Science & Applications, 7, 17117(2018).

    [106] Froula D H, Turnbull D, Davies A S et al. Spatiotemporal control of laser intensity[J]. Nature Photonics, 12, 262-265(2018).

    [107] Hell S W. Far-field optical nanoscopy[J]. Science, 316, 1153-1158(2007).

    [108] Li Z Z, Wang L, Fan H et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment[J]. Light: Science & Applications, 9, 41(2020).

    Tools

    Get Citation

    Copy Citation Text

    Lei Wang, Xu Zhang, Yi Wang, Lin Wang, Qing Wang, Xue Zang, Ruifan Li, Yishi Xu, Zhenze Li, Qidai Chen. Femtosecond Laser Direct Writing for Eternal Data Storage: Advances and Challenges[J]. Chinese Journal of Lasers, 2022, 49(10): 1002504

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jan. 12, 2022

    Accepted: Mar. 1, 2022

    Published Online: May. 12, 2022

    The Author Email: Chen Qidai (chenqd@jlu.edu.cn)

    DOI:10.3788/CJL202249.1002504

    Topics