Chinese Journal of Ship Research, Volume. 19, Issue 1, 15(2024)
Review of research on monocular visual servo-based autonomous control of unmanned surface vehicles
[8] WANG Y, JIANG B, WU Z G et al. Adaptive sliding mode fault-tolerant fuzzy tracking control with application to unmanned marine vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 6691-6700(2020).
[10] WANG N, KARIMI H R. Successive waypoints tracking of an underactuated surface vehicle[J]. IEEE Transactions on Industrial Informatics, 16, 898-908(2019).
[11] LIU Z X, ZHANG Y M, YUAN C et al. Adaptive path following control of unmanned surface vehicles considering environmental disturbances and system constraints[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 339-353(2018).
[12] WANG N, SU S F. Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles[J]. IEEE Transactions on Control Systems Technology, 29, 794-803(2019).
[13] HE S D, WANG M, DAI S L et al. Leader-follower formation control of USVs with prescribed performance and collision avoidance[J]. IEEE Transactions on Industrial Informatics, 15, 572-581(2018).
[21] [21] HILL J, PARK W T. Real time control of a robot with a mobile camera[C]Proceedings of the 9th International Symposium on Industrial Robots. Washington, DC, USA: SME, 1979: 233−246.
[29] CHAUMETTE F, HUTCHINSON S. Visual servo control. part I: basic approaches[J]. IEEE Robotics & Auto-mation Magazine, 13, 82-90(2006).
[30] CHAUMETTE F, HUTCHINSON S. Visual servo control. part II: advanced approaches[J]. IEEE Robotics & Automation Magazine, 14, 109-118(2007).
[40] WU J H, JIN Z H, LIU A D et al. A survey of learning-based control of robotic visual servoing systems[J]. Journal of the Franklin Institute, 359, 556-577(2021).
[43] [43] WANG J, LIU J Y, YI H. A modular designed dynamic positioning experiment system its application on a ship model[C]OCEANS 2016. Shanghai, China: IEEE, 2016: 1−6.
[46] [46] BAY H, TUYTELAARS T, GOOL L V. SURF: speeded up robust features[C]Proceedings of the 9th European conference on Computer Vision(ECCV''06 ) Volume Part I. Berlin, Germany: Springer, 2006: 404−417.
[47] [47] LEUTENEGGER S, CHLI M, SIEGWART R Y. BRISK: Binary robust invariant scalable keypoints[C]Proceedings of International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 2548−2555.
[51] [51] FOSSEN T I. Hbook of marine craft hydrodynamics motion control[M]. New Yk: John Wiley & Sons, 2011.
[53] DAI S L, HE S D, Lin H et al. Platoon formation control with prescribed performance guarantees for USVs[J]. IEEE Transactions on Industrial Electronics, 65, 4237-4246(2017).
[54] ZHAO J X, WANG J H, ZHENG X. Visual servo-based method for bridge crossing of unmanned surface vehicle[J]. International Core Journal of Engineering, 6, 276-284(2020).
[55] [55] ZHAO J X, WANG J H, ZHENG X, et al. Research on USV sailing through the bridge with visual servo[C]Global Oceans 2020: Singape U. S. Gulf Coast. Singape: IEEE, 2020: 1−6.
[56] [56] EKELMANN J, BUTKA B. Seagle 3.0 an autonomous surface vehicle[C]Proceedings of IEEE Southeastcon. lo, FL, USA: IEEE, 2012: 1−5.
[58] [58] MARTINS A, ALMEIDA J M, FERREIRA H, et al. Autonomous surface vehicle docking manoeuvre with visual infmation[C]Proceedings of IEEE International Conference on Robotics Automation. Rome, Italy: IEEE, 2007: 4994−4999.
[59] [59] DUNBABIN M, LANG B, WOOD B. Visionbased docking using an autonomous surface vehicle[C]Proceedings of IEEE International Conference on Robotics Automation. Pasadena, CA,USA: IEEE, 2008: 26−32.
[66] [66] HE H K, WANG N. Monocular visual servo of unmanned surface vehicles with viewfield constraints[C]Proceedings of the 33rd Chinese Control Decision Conference. Kunming, China: IEEE, 2021: 973−978.
[67] MARCHAND E, UCHIYAMA H, SPINDLER F. Pose estimation for augmented reality: a hands-on survey[J]. IEEE Transactions on Visualization and Computer Graphics, 22, 2633-2651(2015).
[70] [70] WANG K, LIU Y H, LI L Y. Visionbased tracking control of nonholonomic mobile robots without position measurement[C]Proceedings of 2013 IEEE International Conference on Robotics Automation. Karlsruhe, Germany: IEEE, 2013: 5265−5270.
[75] WANG N, LV S L, ER M J et al. Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbances[J]. IEEE Transactions on Intelligent Vehicles, 1, 230-243(2017).
[79] WANG R H, ZHANG X B, FANG Y C et al. Virtual-goal-guided RRT for visual servoing of mobile robots with FOV constraint[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 52, 2073-2083(2021).
[84] MIAO Z, ZHONG H, LIN J et al. Vision-based formation control of mobile robots with FOV constraints and unknown feature depth[J]. IEEE Transactions on Control Systems Technology, 29, 2231-2238(2020).
[85] LIN J, MIAO Z Q, ZHONG H et al. Adaptive image-based leader-follower formation control of mobile robots with visibility constraints[J]. IEEE Transactions on Industrial Electronics, 68, 6010-6019(2020).
[86] FANG Y C, LIU X, ZHAGN X B. Adaptive active visual servoing of nonholonomic mobile robots[J]. IEEE Transactions on Industrial Electronics, 59, 486-497(2011).
[87] CHEN X H, JIA Y M. Adaptive leader-follower formation control of non-holonomic mobile robots using active vision[J]. IET Control Theory & Applications, 9, 1302-1311(2015).
[88] WAI R J, LIN Y W. Adaptive moving-target tracking control of a vision-based mobile robot via a dynamic petri recurrent fuzzy neural network[J]. IEEE Transactions on Fuzzy Systems, 21, 688-701(2012).
[90] MA H X, ZOU W, ZHU Z et al. Moving to OOP: an active observation approach for a novel composite visual servoing configuration[J]. IEEE Transactions on Instrumentation and Measurement, 70, 1-15(2020).
[97] [97] WANG J, LIU J Y, YI H. Fmation control of unmanned surface vehicles with vision sens constraints[C]MTSIEEE Oceans, Washington, DC, USA: IEEE, 2015: 1−8.
[98] [98] PANAGOU D, KYRIAKOPOULOS K J. Cooperative fmation control of underactuated marine vehicles f target surveillance under sensing communication constraints[C]Proceedings of 2013 IEEE International Conference on Robotics Automation. Karlsruhe, Germany: IEEE, 2013: 1871−1876.
[99] [99] WANG J, LIU J Y, YI H. Fmation control of unmanned surface vehicles with sensing constraints using exponential remapping method[J]. Mathematical Problems in Engineering, 2017,2027(pt.8): 1−14.
[101] [101] REYNOLDS C W. Flocks, herds schools: a distributed behavial model[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 25–34.
[109] LIANG X, QU X R, WANG N et al. Swarm control with collision avoidance for multiple underactuated surface vehicles[J]. Ocean Engineering, 191, 106-116(2019).
[110] TAN G G, ZOU J, ZHUANG J Y et al. Fast marching square method based intelligent navigation of the unmanned surface vehicle swarm in restricted waters[J]. Applied Ocean Research, 95, 102-117(2020).
[111] TAN G G, ZHUANG J Y, ZOU J et al. Artificial potential field-based swarm finding of the unmanned surface vehicles in the dynamic ocean environment[J]. International Journal of Advanced Robotic Systems, 17, 1-16(2020).
Get Citation
Copy Citation Text
Hongkun HE, Ning WANG, Fuyu ZHANG, Bing HAN. Review of research on monocular visual servo-based autonomous control of unmanned surface vehicles[J]. Chinese Journal of Ship Research, 2024, 19(1): 15
Category:
Received: Dec. 26, 2022
Accepted: --
Published Online: Mar. 18, 2025
The Author Email: