Acta Optica Sinica, Volume. 44, Issue 7, 0734002(2024)
Source Blur Elimination in Micro-CT Using Self-Attention-Based U-Net
[1] Hiller J, Maisl M, Reindl L M. Physical characterization and performance evaluation of an X-ray micro-computed tomography system for dimensional metrology applications[J]. Measurement Science and Technology, 23, 085404(2012).
[2] Welkenhuyzen F, Kiekens K, Pierlet M et al. Industrial computer tomography for dimensional metrology: overview of influence factors and improvement strategies[C], 401-410(2009).
[3] Hiller J, Reindl L M. A computer simulation platform for the estimation of measurement uncertainties in dimensional X-ray computed tomography[J]. Measurement, 45, 2166-2182(2012).
[4] Yu H J, Li L, Tan C D et al. X-ray source translation based computed tomography (STCT)[J]. Optics Express, 29, 19743-19758(2021).
[5] Chen J, Yu H J, Ni S et al. Weighted filtered back-projection for source translation computed tomography reconstruction[J]. IEEE Transactions on Instrumentation and Measurement, 72, 4506409(2023).
[6] Ni S, Yu H J, Chen J et al. Hybrid source translation scanning mode for interior tomography[J]. Optics Express, 31, 13342-13356(2023).
[7] Ge W J, Yu H J, Chen J et al. Analytical reconstruction for source translation scanning computed tomography based on derivative-hilbert transform-back projection[J]. Acta Optica Sinica, 42, 1134025(2022).
[8] Chang M, Xiao Y S, Chen Z Q. Improve spatial resolution by Modeling Finite Focal Spot (MFFS) for industrial CT reconstruction[J]. Optics Express, 22, 30641-30656(2014).
[9] Hu X Y, Zhong Y C, Huang Y Q et al. Improving small animal cone beam CT resolution by mitigating X-ray focal spot induced blurring via deconvolution[J]. Physics in Medicine and Biology, 67, 125005(2022).
[10] Hehn L, Tilley S, Pfeiffer F et al. Blind deconvolution in model-based iterative reconstruction for CT using a normalized sparsity measure[J]. Physics in Medicine and Biology, 64, 215010(2019).
[11] Tilley S, Siewerdsen J H, Stayman J W. Model-based iterative reconstruction for flat-panel cone-beam CT with focal spot blur, detector blur, and correlated noise[J]. Physics in Medicine and Biology, 61, 296-319(2016).
[12] Tilley S, Jacobson M, Cao Q et al. Penalized-likelihood reconstruction with high-fidelity measurement models for high-resolution cone-beam imaging[J]. IEEE Transactions on Medical Imaging, 37, 988-999(2018).
[13] Wang X T, Yu K, Wu S X, Leal-Taixé L, Roth S et al. ESRGAN: enhanced super-resolution generative adversarial networks[M]. Computer vision-ECCV 2018 workshops, 11133, 63-79(2019).
[14] Ledig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 105-114(2017).
[15] Zhang Z C, Yu L Q, Zhao W et al. Modularized data-driven reconstruction framework for nonideal focal spot effect elimination in computed tomography[J]. Medical Physics, 48, 2245-2257(2021).
[16] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 2, 359-366(1989).
[17] Ronneberger O, Fischer P, Brox T, Navab N, Hornegger J, Wells W M et al. U-net: convolutional networks for biomedical image segmentation[M]. Medical image computing and computer-assisted intervention-MICCAI 2015, 9351, 234-241(2015).
[18] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need[C], 6000-6010(2017).
[20] Odena A, Dumoulin V, Olah C. Deconvolution and checkerboard artifacts[J]. Distill, 1, e3(2016).
[21] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).
[22] Nie D, Trullo R, Lian J, Descoteaux M, Maier-Hein L, Franz A et al. Medical image synthesis with context-aware generative adversarial networks[M]. Medical image computing and computer-assisted intervention-MICCAI 2017, 10435, 417-425(2017).
[24] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 9, 249-256(2010).
[26] Kiss M B, Coban S B, Batenburg K J et al. 2DeteCT-A large 2D expandable, trainable, experimental Computed Tomography dataset for machine learning[J]. Scientific Data, 10, 576(2023).
[27] van Aarle W, Palenstijn W J, Cant J et al. Fast and flexible X-ray tomography using the ASTRA toolbox[J]. Optics Express, 24, 25129-25147(2016).
[28] Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm[J]. Journal of the Optical Society of America A, 1, 612-619(1984).
[29] Goodfellow I, Pouget-Abadie J, Mirza M et al. Generative adversarial networks[J]. Communications of the ACM, 63, 139-144(2020).
[30] Imambi S, Prakash K B, Kanagachidambaresan G R, Prakash K B, Kanagachidambaresan G R. PyTorch[M]. Programming with TensorFlow, 87-104(2021).
[31] Chai T, Draxler R R. Root mean square error (RMSE) or mean absolute error (MAE)? -arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 7, 1247-1250(2014).
[32] Horé A, Ziou D. Image quality metrics: PSNR vs. SSIM[C], 2366-2369(2010).
[33] Zhang L, Zhang L, Mou X Q et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 20, 2378-2386(2011).
[34] Venkatanath N, Praneeth D, Chandrasekhar B M et al. Blind image quality evaluation using perception based features[C](2015).
[35] Mittal A, Soundararajan R, Bovik A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 20, 209-212(2013).
[36] Marichal X, Ma W Y, Zhang H J. Blur determination in the compressed domain using DCT information[C], 386-390(2002).
Get Citation
Copy Citation Text
Chuanjiang Liu, Ao Wang, Genyuan Zhang, Wei Yuan, Fenglin Liu. Source Blur Elimination in Micro-CT Using Self-Attention-Based U-Net[J]. Acta Optica Sinica, 2024, 44(7): 0734002
Category: X-Ray Optics
Received: Nov. 29, 2023
Accepted: Jan. 25, 2024
Published Online: Apr. 11, 2024
The Author Email: Liu Fenglin (liufl@cqu.edu.cn)
CSTR:32393.14.AOS231855