Laser & Optoelectronics Progress, Volume. 61, Issue 24, 2428013(2024)

Visual SLAM Algorithm Combining Image Brightness Enhancement Module and IMU Information

Bo Wang*, Danfeng Shen, and Pengfei Bai
Author Affiliations
  • School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi , China
  • show less
    Figures & Tables(20)
    Estimate map of ORB-SLAM2 in MH_05_difficult data sequence
    Gamma corrected nonlinear curves of grayscale of image
    Correction parameter γ change curves with different values of correction factor u
    Comparison of results of feature points extracted by two algorithms. (a) Extraction result of ORB-SLAM2 algorithm; (b) extraction result of AGTFIS-SLAM algorithm
    Schematic diagram of LK optical flow method
    Flowchart of AGTFIS-SLAM algorithm
    Comparison of maps and trajectories of two algorithms. (a) ORB-SLAM2 algorithm map; (b) AGTFIS-SLAM algorithm map; (c) comparison between estimated trajectory of ORB-SLAM2 algorithm and real trajectory; (d) comparison between estimated trajectory of AGTFIS-SLAM algorithm and real trajectory; (e) comparison of precision and recall curves of two algorithms
    Image sequence with dimly processing
    Comparison of absolute trajectory errors of three algorithms
    Comparison of relative pose errors of three algorithms
    Comparison of average tracking time per frame between two algorithms
    Bingda ROS robot
    Laboratory environment. (a) Before treatment; (b) after treatment
    Verification results of AGTFIS-SLAM algorithm. (a) Feature point extraction result; (b) key frame generation result
    • Table 1. Maximum grayscale values enhanced of algorithm by influence of u value when γ=1

      View table

      Table 1. Maximum grayscale values enhanced of algorithm by influence of u value when γ=1

      uMaximum grayscale value
      0.136
      0.251
      0.377
      0.4102
      0.5128
      0.6153
      0.7179
      0.8204
      0.9230
    • Table 2. Tracking accuracies of AGTFIS-SLAM algorithm with different u values

      View table

      Table 2. Tracking accuracies of AGTFIS-SLAM algorithm with different u values

      uATT /msATE /mRPE /m
      u=0.3370.05410.6112
      u=0.4400.04920.6351
      u=0.5360.05060.6199
      u=0.6420.05130.6149
      u=0.7440.05230.6197
    • Table 3. Absolute trajectory errors

      View table

      Table 3. Absolute trajectory errors

      Data sequenceOnly image enhancementOnly IMUORB-SLAM2

      AGTFIS-

      SLAM

      MH_04_difficult0.05660.05740.05800.0560
      MH_05_difficult0.05320.08280.12650.0506
      V2_03_difficult0.16580.22570.31020.1535
      Average0.09190.12200.16490.0867
    • Table 4. Absolute trajectory errors

      View table

      Table 4. Absolute trajectory errors

      Data sequence

      ORB-

      SLAM2

      ORB-

      SLAM3

      AGTFIS-

      SLAM

      fr1.xyz0.05500.02420.0120
      fr1.desk0.03030.0144
      fr1.room0.0986
      MH_04_difficult0.05800.05080.0560
      MH_05_difficult0.12650.05360.0506
      V1_01_easy0.09530.09570.0950
      V1_02_medium0.06400.06300.0649
      V1_03_difficult0.08920.06640.0639
      V2_01_easy0.05910.07320.0575
      V2_02_medium0.05670.05610.0546
      V2_03_difficult0.31020.16740.1535
      Average0.10150.06810.0655
    • Table 5. Relative pose errors

      View table

      Table 5. Relative pose errors

      Data sequence

      ORB-

      SLAM2

      ORB-

      SLAM3

      AGTFIS-

      SLAM

      fr1.xyz0.03790.01890.0140
      fr1.desk0.02070.0160
      fr1.room0.0597
      MH_04_difficult0.64290.53890.6076
      MH_05_difficult0.62030.44710.4271
      V1_01_easy0.58850.48830.5160
      V1_02_medium0.58010.50780.5658
      V1_03_difficult0.53550.41530.4855
      V2_01_easy0.23450.18200.2032
      V2_02_medium0.53340.47640.5242
      V2_03_difficult0.47200.42380.4743
      Average0.47170.35190.3539
    • Table 6. Average tracking time per frame

      View table

      Table 6. Average tracking time per frame

      Data sequenceORB-SLAM2AGTFIS-SLAM
      fr1.xyz3321
      fr1.desk23
      fr1.room29
      MH_04_difficult3725
      MH_05_difficult4136
      V1_01_easy3431
      V1_02_medium3427
      V1_03_difficult3027
      V2_01_easy4232
      V2_02_medium4733
      V2_03_difficult4431
      Average3829
    Tools

    Get Citation

    Copy Citation Text

    Bo Wang, Danfeng Shen, Pengfei Bai. Visual SLAM Algorithm Combining Image Brightness Enhancement Module and IMU Information[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2428013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Apr. 24, 2024

    Accepted: May. 20, 2024

    Published Online: Dec. 17, 2024

    The Author Email:

    DOI:10.3788/LOP241164

    CSTR:32186.14.LOP241164

    Topics