Journal of Inorganic Materials, Volume. 40, Issue 6, 704(2025)

Effect of Ga3+ Doping on Crystal Structure Evolution and Microwave Dielectric Properties of SrAl2Si2O8 Ceramic

Changzhi YIN1,2, Mingfei CHENG1,2, Weicheng LEI1,2, Yiyang CAI1,2, Xiaoqiang SONG1,2, Ming FU1,2, Wenzhong LÜ1,2, and Wen LEI1,2、*
Author Affiliations
  • 11. Key Lab of Functional Materials for Electronic Information (B) of MOE, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 22. Wenzhou Key Laboratory of Microwave Communication Materials and Devices, Wenzhou Advanced Manufacturing Institute of HUST, Wenzhou 325000, China
  • show less
    References(31)

    [1] SEBASTIAN M T, UBIC R, JANTUNEN H. Low-loss dielectric ceramic materials and their properties[J]. International Materials Reviews, 60, 392(2015).

    [2] LI Q Q, TAN J, WU Z C et al. Hierarchical magnetic-dielectric synergistic Co/CoO/RGO microspheres with excellent microwave absorption performance covering the whole X band[J]. Carbon, 201:, 150(2023).

    [3] TIAN H R, ZHANG X H, ZHANG Z D et al. Low-permittivity LiLn(PO3)4 (Ln = La, Sm, Eu) dielectric ceramics for microwave/ millimeter-wave communication[J]. Journal of Advanced Ceramics, 13, 602(2024).

    [4] ZHOU D, PANG L X, WANG D W et al. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture[J]. Journal of Materials Chemistry C, 5, 10094(2017).

    [6] LOU W C, MAO M M, SONG K X et al. Low permittivity cordierite- based microwave dielectric ceramics for 5G/6G telecommunications[J]. Journal of the European Ceramic Society, 42, 2820(2022).

    [7] ULLAH A, LIU H X, HAO H et al. Influence of TiO2 additive on sintering temperature and microwave dielectric properties of Mg0.90Ni0.1SiO3 ceramics[J]. Journal of the European Ceramic Society, 37, 3045(2017).

    [8] SHANNON R D, ROSSMAN G R. Dielectric constants of silicate garnets and the oxide additivity rule[J]. American Mineralogist, 77, 94(1992).

    [9] SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. Journal of Applied Physics, 73, 348(1993).

    [10] YIN C Z, DU K, ZOU Z Y et al. Design and fabrication of a C-band patch antenna using novel low permittivity SrGa2Si2O8 microwave dielectric ceramic[J]. Journal of the European Ceramic Society, 43, 6091(2023).

    [11] TIAN H R, ZHENG J J, LIU L T et al. Structure characteristics and microwave dielectric properties of Pr2(Zr1-xTix)3(MoO4)9 solid solution ceramic with a stable temperature coefficient[J]. Journal of Materials Science & Technology, 116, 121(2022).

    [12] YIN C Z, DU K, SONG X Q et al. A novel low permittivity microwave dielectric ceramic Sr2Ga2SiO7 for application in patch antenna[J]. Journal of the American Ceramic Society, 106, 4284(2023).

    [13] DOSLER U, KRZMANCM M, JANCAR B et al. A high-Q microwave dielectric material based on Mg3B2O6[J]. Journal of the American Ceramic Society, 93, 3788(2010).

    [14] ZHOU D, PANG L X, WANG D W. High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates[J]. ACS Sustainable Chemistry Engineering, 6, 11138(2018).

    [15] LIU B, HU C C, HUANG Y H et al. Crystal structure, infrared reflectivity spectra and microwave dielectric properties of CaAl2O4 ceramics with low permittivity[J]. Journal of Alloys and Compounds, 791:, 1033(2019).

    [16] BANSAL N P, DRUMMOND C H. Kinetics of hexacelsian-to- celsian phase transformation in SrAl2Si2O8[J]. Journal of the American Ceramic Society, 76, 1321(1993).

    [17] HAKK B W, COLEMAN P D. A dielectric resonator method of measuring inductive capacities in the millimeter range[J]. IRE Transactions on Microwave Theory and Techniques, 8, 402(1960).

    [18] LI C C, XIANG H C, XU M Y et al. Li2AGeO4 (A = Zn, Mg): two novel low-permittivity microwave dielectric ceramics with olivine structure[J]. Journal of the European Ceramic Society, 38, 1524(2018).

    [19] XING Z, YIN C Z, YU Z Z et al. Synthesis of LiBGeO4 using compositional design and its dielectric behaviors at RF and microwave frequencies[J]. Ceramics International, 46, 22460(2020).

    [20] BAO J, ZHANG Y P, KIMURA H et al. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1-xTix)3(MoO4)9 ceramics[J]. Journal of the Advanced Ceramics, 12, 82(2023).

    [21] YOON S H, KIM D, CHO S et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds[J]. Journal of the European Ceramic Society, 26, 2051(2006).

    [22] SONG X Q, DU K, LI J et al. Crystal structures and microwave dielectric properties of novel low-permittivity Ba1-xSrxZnSi3O8 ceramics[J]. Materials Research Bulletin, 112:, 178(2019).

    [23] SONG X Q, DU K, ZHANG X Z et al. Crystal structure, phase composition and microwave dielectric properties of Ca3MSi2O9ceramics[J]. Journal of Alloys and Compounds, 750:, 996(2018).

    [24] XIONG S Y, MO C, ZHU X W et al. Low-temperature sintering of LiBxAl1-xSi2O6 microwave dielectric ceramics with ultra-low permittivity[J]. Journal of Inorganic Materials, 40, 536(2025).

    [25] KIM E S, CHUNB S, FREER R et al. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics[J]. Journal of the European Ceramic Society, 30, 1731(2010).

    [26] KIM E S, KIM S H. Effects of structural characteristics on microwave dielectric properties of (1-x)CaWO4-xLaNbO4 ceramics[J]. Journal of Electroceramics, 17:, 471(2006).

    [27] LI C C, YIN C Z, KHALIQ J et al. Ultralow-temperature synthesis and densification of Ag2CaV4O12 with improved microwave dielectric performances[J]. ACS Sustainable Chemistry Engineering, 9:, 14461(2021).

    [28] WANG X Y, LIU T, CAO Z K et al. Lattice vibrational characteristics and structure-property relationships of Ca(Mg1/2W1/2)O3 microwave dielectric ceramics with different sintering temperatures[J]. Ceramics International, 48, 1415(2022).

    [29] GUO J, ZHOU D, WANG H et al. Microwave dielectric properties of (1-x)ZnMoO4-xTiO2 composite ceramics[J]. Journal of Alloys and Compounds, 509:, 5863(2011).

    [30] AN Z F, LV J Q, WANG X Y et al. Effects of LiF additive on crystal structures, lattice vibrational characteristics and dielectric properties of CaWO4 microwave dielectric ceramics for LTCC applications[J]. Ceramics International, 48, 29929(2022).

    [31] YIN C Z, ZOU Z Y, CHENG M F et al. Microwave dielectric properties of CaB2O4-CaSiO3 system for LTCC applications[J]. Crystals, 13, 790(2023).

    Tools

    Get Citation

    Copy Citation Text

    Changzhi YIN, Mingfei CHENG, Weicheng LEI, Yiyang CAI, Xiaoqiang SONG, Ming FU, Wenzhong LÜ, Wen LEI. Effect of Ga3+ Doping on Crystal Structure Evolution and Microwave Dielectric Properties of SrAl2Si2O8 Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 704

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 31, 2024

    Accepted: --

    Published Online: Sep. 2, 2025

    The Author Email: Wen LEI (wenlei@mail.hust.edu.cn)

    DOI:10.15541/jim20240549

    Topics