Chinese Journal of Lasers, Volume. 48, Issue 9, 0903003(2021)
Investigation on Residual Stress in Monolithic Edge-Cladding of Elliptical Nd-Doped Phosphate Laser Glass for High-Peak Power Solid-State Laser
[6] Campbell J H. 25 years of laser glass development leading to a 1.8 MJ,500 TW laser for fusion ignition[R]. Livermore: Lawrence Livermore National Laboratory(1998).
[7] Campbell J H, Suratwala T I. Nd-doped phosphate glasses for high-energy/high-peak-power lasers[J]. Journal of Non-Crystalline Solids, 263/264, 318-341(2000).
[9] Hu L L, Chen S B, Tang J P et al. Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility[J]. High Power Laser Science and Engineering, 2, 34-39(2014).
[10] Goren C, Tzuk Y, Marcus G et al. Amplified spontaneous emission in slab amplifiers[J]. IEEE Journal of Quantum Electronics, 42, 1239-1247(2006).
[11] Peterson P, Gavrielides A, Newell T C et al. ASE in thin disk lasers: Theory and experiment[J]. Optics Express, 19, 25672-25684(2011).
[13] Brown D C, Jacobs S D, Nee N. Parasitic oscillations, absorption, stored energy density and heat density in active-mirror and disk amplifiers[J]. Applied Optics, 17, 211-224(1978).
[14] Contag K, Karszewski M, Stewen C et al. Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb: YAG laser[J]. Quantum Electronics, 29, 697-703(1999).
[15] Albach D, Chanteloup J C, Touzé Gl. Influence of ASE on the gain distribution in large size, high gain Yb 3+: YAG slabs[J]. Optics Express, 17, 3792-3801(2009).
[16] Speiser J. Scaling of thin-disk lasers—influence of amplified spontaneous emission[J]. Journal of the Optical Society of America B, 26, 26-35(2009).
[20] Patterson F G, Bonlie J, Price D et al. Suppression of parasitic lasing in large-aperture Ti: Sapphire laser amplifiers[J]. Optics Letters, 24, 963-965(1999).
[21] Sridharan A K, Saraf S, Sinha S et al. Zigzag slabs for solid-state laser amplifiers: batch fabrication and parasitic oscillation suppression[J]. Applied Optics, 45, 3340-3351(2006).
[22] Liang X, Leng Y, Wang C et al. Parasitic lasing suppression in high gain femtosecond petawatt Ti: sapphire amplifier[J]. Optics Express, 15, 15335-15341(2007).
[23] Ertel K, Hooker C, Hawkes S J et al. ASE suppression in a high energy titanium sapphire amplifier[J]. Optics Express, 16, 8039-8049(2008).
[24] Zhang Y L, Wei X F, Li M Z et al. Parasitic oscillation suppression in high-gain solid-state amplifiers[J]. Laser Physics, 23, 055802(2013).
[25] Honea E C, Beach R J. Parasitic oscillation suppression in solid state lasers using optical coatings: US6904069[P](2005).
[26] Powell H T, Riley M O, Wolfe C R et al. Composite polymer-glass edge cladding for laser disks: US4849036[P](1989).
[27] Meng T, Tang J P, Hu J J et al. Edge cladding technology to suppress the amplified stimulated emission (ASE) of the laser disks: ZL201010273819.7[P](2013).
[28] Hisayoshi T. Edge-cladding glass of disc laser glass:US4217382[P](1980).
[29] Marker A J, Campbell J H. Cladding glass ceramic for use in high powered lasers:US5718979[P](1998).
[30] Lloyd A H, Thomas F S, Scott N F et al. Gain media edge treatment to suppress amplified spontaneous emission in a high power laser:US7463660[P](2008).
[31] Torquato S. Hard knock for thermodynamics[J]. Nature, 405, 521-523(2000).
[32] Mckenzie H W, Hand R J. Basic optical stress measurement in glass[M](2011).
Get Citation
Copy Citation Text
Huiyu Chen, Min Qian, Jingping Tang, Jimeng Cheng, Xin Wan, Junjiang Hu, Tao Meng, Yujing Shen, Shubin Chen, Lili Hu, Wei Chen. Investigation on Residual Stress in Monolithic Edge-Cladding of Elliptical Nd-Doped Phosphate Laser Glass for High-Peak Power Solid-State Laser[J]. Chinese Journal of Lasers, 2021, 48(9): 0903003
Category: materials and thin films
Received: Nov. 3, 2020
Accepted: Dec. 16, 2020
Published Online: Apr. 26, 2021
The Author Email: Chen Wei (weichen@siom.ac.cn)