Chinese Journal of Lasers, Volume. 47, Issue 7, 701001(2020)
Review of Semiconductor Distributed Feedback Lasers in the Optical Communication Band
[1] Hall R N, Fenner G, Kingsley J D et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 9, 366-368(1962).
[2] Nathan M, Dumke W P, Burns G et al. Stimulated emission of radiation from GaAs p-n junctions[J]. Applied Physics Letters, 1, 62-64(1962).
[3] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 113, 1151-1158(1966).
[4] Matsui Y, Schatz R, Pham T et al. 55 GHz bandwidth distributed reflector laser[J]. Journal of Lightwave Technology, 35, 397-403(2017).
[5] Sasada N, Nakajima T, Sekino Y et al. Wide-temperature-range (25-80 ℃) 53-Gbaud PAM4 (106 Gb/s) operation of 1.3 μm directly modulated DFB lasers for 10 km transmission[J]. Journal of Lightwave Technology, 37, 1686-1689(2019).
[6] Okai M, Suzuki M, Taniwatari T. Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6 kHz) spectral linewidth[J]. Electronics Letters, 29, 1696-1697(1993).
[7] Doussiere P, Shieh C L. DeMars S, et al. Very high-power 1310 nm InP single mode distributed feed back laser diode with reduced linewidth[J]. Proceedings of SPIE, 6485, 64850G(2007).
[8] Kogelnik H, Shank C V. Stimulated emission in a periodic structure[J]. Applied Physics Letters, 18, 152-154(1971).
[9] Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers[J]. Journal of Applied Physics, 43, 2327-2335(1972).
[10] Nakamura M, Yariv A, Yen H W et al. Optically pumped GaAs surface laser with corrugation feedback[J]. Applied Physics Letters, 22, 515-516(1973).
[11] Haus H, Shank C. Antisymmetric taper of distributed feedback lasers[J]. IEEE Journal of Quantum Electronics, 12, 532-539(1976).
[12] Akiba S, Usami M, Utaka K. 1.5 μm λ/4-shifted InGaAsP/InP DFB lasers[J]. Journal of Lightwave Technology, 5, 1564-1573(1987).
[13] Soda H, Kotaki Y, Sudo H et al. Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers[J]. IEEE Journal of Quantum Electronics, 23, 804-814(1987).
[14] Agrawal G P, Geusic J E, Anthony P J. Distributed feedback lasers with multiple phase‐shift regions[J]. Applied Physics Letters, 53, 178-179(1988).
[15] Okai M, Chinone N, Taira H et al. Corrugation-pitch-modulated phase-shifted DFB laser[J]. IEEE Photonics Technology Letters, 1, 200-201(1989).
[16] Huang Y D, Sato K, Okuda T et al. Low-chirp and external optical feedback resistant characteristics in λ/8 phase-shifted distributed-feedback laser diodes under direct modulation[J]. IEEE Journal of Quantum Electronics, 38, 1479-1484(2002).
[17] Luo Y, Nakano Y, Tada K et al. Purely gain-coupled distributed feedback semiconductor lasers[J]. Applied Physics Letters, 56, 1620-1622(1990).
[18] Nakamura K, Miyamura S, Sekikawa R et al. Optical feedback-tolerant 1.3 μm gain-coupled DFB lasers for isolator-free micro-BOSA modules[C]∥OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers , 1-3(2007).
[19] Miller L M, Verdeyen J T, Coleman J J et al. A distributed feedback ridge waveguide quantum well heterostructure laser[J]. IEEE Photonics Technology Letters, 3, 6-8(1991).
[21] Coldren L A, Corzine S W, Mašanovic M L. Diode lasers and photonic integrated circuits[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc.(2012).
[22] Thibeault B J, Bertilsson K, Hegblom E R et al. High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers[J]. IEEE Photonics Technology Letters, 9, 11-13(1997).
[23] Tatham M C, Lealman I F, Seltzer C P et al. Resonance frequency, damping, and differential gain in 1.5 μm multiple quantum-well lasers[J]. IEEE Journal of Quantum Electronics, 28, 408-414(1992).
[24] Fukamachi T, Adachi K, Shinoda K et al. Wide temperature range operation of 25-Gb/s 1.3 μm InGaAlAs directly modulated lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1138-1145(2011).
[25] Yamamoto T. High-speed directly modulated lasers. [C]∥Optical Fiber Communication Conference. Washington, D.C.: OSA(2012).
[26] Morton P A, Logan R A, Tanbun-Ek T et al. 25 GHz bandwidth 1.55 μm GaInAsP p-doped strained multiquantum-well lasers[J]. Electronics Letters, 28, 2156(1992).
[27] Shimizu J, Yamada H, Murata S et al. Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 μm InGaAs/InGaAsP MQW and strained-MQW lasers[J]. IEEE Photonics Technology Letters, 3, 773-776(1991).
[28] Chiu L, Yariv A. Auger recombination in quantum-well InGaAsP heterostructure lasers[J]. IEEE Journal of Quantum Electronics, 18, 1406-1409(1982).
[29] Childs G N, Brand S, Abram R A. Intervalence band absorption in semiconductor laser materials[J]. Semiconductor Science and Technology, 1, 116-120(1986).
[30] Matsui Y, Murai H, Arahira S et al. 30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser[J]. IEEE Photonics Technology Letters, 9, 25-27(1997).
[31] Tsuchiya T, Takemoto D, Taike A et al. Large number of periods in highly strained InGaAlAs/InGaAlAs MQW structures grown by metalorganic vapor-phase epitaxy[C]∥Conference Proceedings. Eleventh International Conference on Indium Phosphide a, 47-50(1999).
[32] Lu H, Blaauw C, Benyon B et al. High-power and high-speed performance of gain-coupled 1.3 μm strained-layer MQW DFB lasers[C]∥Proceedings of IEEE 14th International Semiconductor Laser Conference. 19-23 Sept. 1994, Maui, HI, USA., 51-52(1994).
[34] Chang F. Datacenter connectivity technologies: principles and practice[M]. Denmark: River Publishers(2018).
[35] Matsui Y, Li W, Roberts H et al. Transceiver for NG-, 1-3(2016).
[36] Wang D L, Zhou N, Zhang J et al. High-temperature and high-speed operation of 1.3 μm uncooled AlGaInAs-InP MQW-DFB lasers[J]. Proceedings of SPIE, 6020, 60201U(2005).
[37] Shim J I, Komori K, Arai S et al. Lasing characteristics of 1.5 μm GaInAsP-InP SCH-BIG-DR lasers[J]. IEEE Journal of Quantum Electronics, 27, 1736-1745(1991).
[38] Yamamoto T, Uetake A, Otsubo K et al. Uncooled 40-Gbps direct modulation of 1.3-μm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure[C]∥22nd IEEE International Semiconductor Laser Conference. 26-, 193-194(2010).
[39] Nakahara K, Wakayama Y, Kitatani T et al. Directmodulation at 56 and 50 Gb/s of 1.3 μm InGaAlAs ridge-shaped-BH DFB lasers[J]. IEEE Photonics Technology Letters, 27, 534-536(2015).
[40] Simoyama T, Matsuda M, Okumura S et al. 50 Gbps direct modulation using 1.3 μm AlGaInAs MQW distribute-reflector lasers[C]∥2012 38th European Conference and Exhibition on Optical Communications. 16-20 Sept. 2012, Amsterdam, Netherlands., 1-3(2012).
[41] Kobayashi W, Ito T, Yamanaka T et al. 50-Gb/s direct modulation of a 1.3 μm InGaAlAs-based DFB laser with a ridge waveguide structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1500908(2013).
[42] Tager A A, Petermann K. High-frequency oscillations and self-mode locking in short external-cavity laser diodes[J]. IEEE Journal of Quantum Electronics, 30, 1553-1561(1994).
[43] Radziunas M, Glitzky A, Bandelow U et al. Improving the modulation bandwidth in semiconductor lasers by passive feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 136-142(2007).
[44] Bauer S, Brox O, Kreissl J et al. Optical microwave source[J]. Electronics Letters, 38, 334-335(2002).
[45] Brox O, Bauer S, Radziunas M et al. High-frequency pulsations in DFB lasers with amplified feedback[J]. IEEE Journal of Quantum Electronics, 39, 1381-1387(2003).
[46] Troppenz U, Kreissl J et al. 40 Gbit/s directly modulated lasers: physics and application[J]. Proceedings of SPIE, 7953, 79530F(2011).
[48] Mao Y F, Ren Z L, Guo L et al. Modulation bandwidth enhancement in distributed reflector laser based on identical active layer approach[J]. IEEE Photonics Journal, 10, 1-8(2018).
[49] Guo F. Investigation of monolithically integrated high-speed photonic chip for next generation datacom applications[D]. Beijing: University of Chinese Academy of Sciences(2016).
[50] Wang H. Research on high performance high speed directly modulated DFB laser and high power DFB laser[D]. Beijing: University of Chinese Academy of Sciences(2019).
[51] Chen T R, Ungar J, Yeh X L et al. Very large bandwidth strained MQW DFB laser at 1.3 μm[J]. IEEE Photonics Technology Letters, 7, 458-460(1995).
[52] Steinhagen F, Lösch R, Hartnagel H L et al. AlGaInAs/InP 1.5 μm MQW DFB laser diodes exceeding 20 GHz bandwidth[J]. Electronics Letters, 31, 274-275(1995).
[53] Troppenz U, Kreissl J. 40 Gb/s directly modulated InGaAsP passive feedback DFB laser. [C]∥32nd European Conference and Exhibition on Optical Communications (ECOC), Sep. 24-28, Cannes France. New York: IEEE, 2-3(2006).
[55] Matsui Y, Pham T, Sudo T et al. 28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310 nm Al-BH DFB laser[J]. Journal of Lightwave Technology, 34, 2677-2683(2016).
[57] Garbuzov D, Xu L, Forrest S R et al. 1.5 μm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power[J]. Electronics Letters, 32, 1717-1719(1996).
[58] Chen T R, Hsin W. Very high power DFB CW light source at 1550 nm for high-performance supertrunking[J]. Proceedings of SPIE, 3547, 24-36(1998).
[59] Shterengas L, Menna R, Trussell W et al. Effect of heterobarrier leakage on the performance of high-power 1.5 μm InGaAsP multiple-quantum-well lasers[J]. Journal of Applied Physics, 88, 2211-2214(2000).
[60] Han I K, Cho S H. Heim P J S, et al. Dependence of the light-current characteristics of 1.55 μm broad-area lasers on different p-doping profiles[J]. IEEE Photonics Technology Letters, 12, 251-253(2000).
[62] Nagashima Y, Onuki S, Shimose Y et al. 1480 nm pump laser with asymmetric quaternary cladding structure achieving high output power of >1.2 W with low power consumption[C]∥2004 IEEE 19th International Semiconductor Laser Conference. 21-, 47-48(2004).
[63] Shih M H, Kapre R M, Logan R A et al. Alignment-relaxed 1.55 μm multiquantum well lasers fabricated using standard buried heterostructure laser processes[J]. Electronics Letters, 31, 1058-1060(1995).
[65] Borchert B. Spatial hole-burning effects in distributed-feedback semiconductor lasers[J]. Proceedings of SPIE, 1523, 194-199(1992).
[66] Stegmüller B, Borchert T et al. Complex coupled distributed feedback lasers: structures and recent progress in performance. [C]∥Conference on Lasers and Electro-Optics, May 21-26, 1995, Baltimore, Maryland, United States. Washington: Optical Society of America, CThK1(1995).
[67] Whiteaway J E A, Thompson G H B, Collar A J et al. The design assessment of λ/4 phase-shifted DFB laser structures[J]. IEEE Journal of Quantum Electronics, 25, 1261-1279(1989).
[68] Wenzel H, Bugge F, Dallmer M et al. Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence[J]. IEEE Photonics Technology Letters, 20, 214-216(2008).
[69] Menna R, Komissarov A, Maiorov M et al. High power 1550 nm distributed feedback lasers with 440 mW CW output power for telecommunication applications[C]∥Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro.
[70] Garbuzov D Z, Maiorov M A, Menna R J et al. High-power 1300-nm Fabry-Perot and DFB ridge-waveguide lasers[J]. Proceedings of SPIE, 4651, 92-100(2002).
[71] Wang H, Zhang R K, Kan Q et al. High-power wide-bandwidth 1.55-μm directly modulated DFB lasers for free space optical communications. [C]∥Conference on Lasers and Electro-Optics. Washington, D.C.: OSA(2019).
[72] Chen T R, Ungar J, Iannelli J et al. High power operation of InGaAsP/InP multiquantum well DFB lasers at 1.55 μm wavelength[J]. Electronics Letters, 32, 898(1996).
[73] Sugg A R, Abeles J H, Braun A M et al. Design and characterization of 200-mW-class distributed feedback lasers at 1.55 μm[C]∥Conference Proceedings. 2000 International Conference on Indium Phosphide and Related Materials (Cat. No.00CH37107, 282-285(2000).
[74] Huang J, Lu H, Su H. Ultra-high power, 180 mW, 100 kHz. nm WDM+100 km long-haul transmission. [C]∥International Conference on Engineering and Meta-Engineering, Apr. 6-9, 2010, Orlando, FL, USA. Florida: Int Inst Informatics &, Systemics, 31-35(1550).
[75] Kojima K, Kyuma K. Analysis of the spectral linewidth of distributed feedback laser diodes[J]. Electronics Letters, 20, 869-871(1984).
[76] Liou K, Dutta N K, Burrus C. Linewidth‐narrowed distributed feedback injection lasers with long cavity length and detuned Bragg wavelength[J]. Applied Physics Letters, 50, 489-491(1987).
[77] Kunii T, Matsui Y. Narrow spectral linewidth semiconductor lasers[J]. Optical and Quantum Electronics, 24, 719-735(1992).
[78] Schawlow A L, Townes C H. Infrared and optical masers[J]. Physical Review, 112, 1940-1949(1958).
[79] Fleming M W, Mooradian A. Fundamental line broadening of single-mode (GaAl)As diode lasers[J]. Applied Physics Letters, 38, 511-513(1981).
[80] Henry C. Theory of the phase noise and power spectrum of a single mode injection laser[J]. IEEE Journal of Quantum Electronics, 19, 1391-1397(1983).
[81] Yokouchi N, Yamanaka N, Iwai N et al. Tensile-strained GaInAsP-InP quantum-well lasers emitting at 1.3 μm[J]. IEEE Journal of Quantum Electronics, 32, 2148-2155(1996).
[82] Kikuchi K, Okoshi T. Measurement of FMnoise, AM noise, and field spectra of 1.3 μm InGaAsP DFB lasers and determination of the linewidth enhancement factor[J]. IEEE Journal of Quantum Electronics, 21, 1814-1818(1985).
[83] Dutta N K, Wynn J D, Sivco D L et al. Linewidth enhancement factor in strained quantum well lasers[J]. Applied Physics Letters, 56, 2293-2294(1990).
[84] Aoki M, Uomi K, Tsuchiya T et al. Quantum size effect on longitudinal spatial hole burning in MQW λ/4-shifted DFB lasers[J]. IEEE Journal of Quantum Electronics, 27, 1782-1789(1991).
[85] Yamazaki H, Sasaki T, Kida N et al. 250 kHz linewidth operation in long cavity 1.5 μm multiple quantum well DFB-LDs with reduced linewidth enhancement factor. [C]∥Optical Fiber Communication. Washington, D.C.: OSA(1990).
[86] Kotaki Y, Fujii T, Ogita S et al. Narrow linewidth and wavelength tunable multiple quantum well λ/4 shifted distributed feedback laser. [C]∥Optical Fiber Communication. Washington, D.C.: OSA(1990).
[87] Pan X, Olesen H, Tromborg B. Linewidth and FM noise spectrum of DFB lasers including spatial holeburning and nonlinear gain[C]∥12th IEEE International Conference on Semiconductor Laser. 9-14 Sept. 1990, Davos, Switzerland., 118-119(1990).
[88] Ogita S, Kotaki Y, Kihara K et al. Dependence of spectral linewidth on cavity length and coupling coefficient in DFB laser[J]. Electronics Letters, 24, 613-614(1988).
[89] Kojima K, Kyuma K, Nakayama T. Analysis of the spectral linewidth of distributed feedback laser diodes[J]. Journal of Lightwave Technology, 3, 1048-1055(1985).
[90] Ogita S, Kotaki Y, Matsuda M et al. Long-cavity, multiple-phase-shift, distributed feedback laser for linewidth narrowing[J]. Electronics Letters, 25, 629-630(1989).
[91] Okai M, Tsuchiya T, Uomi K et al. Corrugation-pitch modulated MQW-DFB lasers with narrow spectral linewidth[J]. IEEE Journal of Quantum Electronics, 27, 1767-1772(1991).
[92] Telkkälä J, Viheriälä J, Bister M et al. Narrow linewidth 1.55 μm laterally-coupled DFB lasers fabricated using nanoimprint lithography[J]. IPRM 2011-23rd International Conference on Indium Phosphide and Related Materials, 1-4(2011).
[93] Hou L, Haji M, Akbar J et al. Narrow linewidth laterally coupled 1.55 μm AlGaInAs/InP distributed feedback lasers integrated with a curved tapered semiconductor optical amplifier[J]. Optics Letters, 37, 4525-4527(2012).
[95] Kikuchi K. Precise estimation of linewidth reduction in wavelength-detuned DFB semiconductor lasers[J]. Electronics Letters, 24, 80-81(1988).
[96] Ogita S, Hirano M, Soda H et al. Dependence of spectrallinewidth of DFB lasers on facet reflectivity[J]. Electronics Letters, 23, 347(1987).
[97] Zhao Y G, Luo X N, Tran D et al. High-power and low-noise DFB semiconductor lasers for RF photonic links[C]∥IEEE Avionics. 11-13 Sept. 2012, Cocoa Beach, FL, USA., 66-67(2012).
[98] Schreiner R, Wiedmann J, Coenning W et al. Fabrication approach for antiphase narrow linewidth complex coupled 1.55 μm DFB lasers[J]. Electronics Letters, 35, 146-148(1999).
[99] Huang J S, Su H, He X G et al. Ultra-high power, low RIN and narrow linewidth lasers for C-band DWDM +100 km fiber optic link[C]∥IEEE Photonic Society 24th Annual Meeting. 9-13 Oct. 2011, Arlington, VA, USA., 212-213(2011).
[100] Beuchet G, Mimoun M et al. Ultra high power, ultra low RIN up to 20 GHz 1.55 μm DFB AlGaInAsP laser for analog applications[J]. Proceedings of SPIE, 7616, 76160Y(2010).
[101] Faugeron M, Benazet B, Maho A et al. High-performance DFB laser module for space applications: the FP7 HiPPO achievements from chip fabrication to system validation[J]. Proceedings of SPIE, 1118, 111803J(2019).
Get Citation
Copy Citation Text
Lu Dan, Yang Qiulu, Wang Hao, He Yiming, Qi Hefei, Wang Huan, Zhao Lingjuan, Wang Wei. Review of Semiconductor Distributed Feedback Lasers in the Optical Communication Band[J]. Chinese Journal of Lasers, 2020, 47(7): 701001
Special Issue:
Received: Feb. 24, 2020
Accepted: --
Published Online: Jul. 10, 2020
The Author Email: