Chinese Journal of Lasers, Volume. 47, Issue 7, 701001(2020)

Review of Semiconductor Distributed Feedback Lasers in the Optical Communication Band

Lu Dan1,2,3, Yang Qiulu1,2,3, Wang Hao1,2,3, He Yiming1,2,3, Qi Hefei1,2,3, Wang Huan1,2,3, Zhao Lingjuan1,2,3, and Wang Wei1,2,3
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
  • show less
    Figures & Tables(12)
    Typical structure of a semiconductor DFB laser and gratings. (a) Structures of distributed feedback lasers; (b) uniform grating; (c) λ/4 phase-shifted grating
    Surface grating structure. (a) Laterally-coupled grating; (b) slot grating
    Optimization of high speed DMLs. (a) Influence of the number of quantum wells on differential gain[23]; (b) uncooled operation comparison using InGaAsP and AlGaInAs quantum wells[24]; (c) influence of wavelength offset on differential gain[25]
    DML with integrated passive structure. (a) Distributed reflector laser[25]; (b) integrated passive waveguide[39]
    PPR and structures. (a) PPR principle[25]; (b) passive feedback structure[25]; (c) amplified feedback structure[47]
    SCH layer and cladding doping optimization. (a) Structure of a laser with GRIN-SCH layers and dilute waveguide[50]; (b) influence of doping level on the injection efficiency at the SCH/p-cladding interface[59]; (c) doping concentration-depth profiles of structures with low doped p-cladding InP (Type 1), graded doped p-cladding InP (Type 2), and delta-doped interfaces and moderate doped p-confining
    Mode control. (a) Optical intensity distribution for low κL (upper) and high κL (lower) values [67]; (b) relationship between κL and intensity distribution function F, a lower F indicates a more uniform intensity distribution [13]; (c) a double-trench ridge waveguide laser structure[68]
    Trend of DFB laser linewidth. (a) Output power[76]; (b) cavity length[76] ; (c) wavelength detuning[88]
    • Table 1. Research progress on high-speed direct-modulated DFB with bandwidth exceeding 20 GHz

      View table

      Table 1. Research progress on high-speed direct-modulated DFB with bandwidth exceeding 20 GHz

      YearResearchinstitutionKey featureλ /μmMaterial/No.of MQWsBandwidth /GHzActiveregionlength /μmReference
      1995OrtelBH; λ-detuned:15 nm; thin SCHto suppress carrier transport;optimized metal contact RC1.3InGaAsP/1020250[51]
      1995HHIBH; λ-detuned:10 nm;asymmetrical SCH1.5AlGaInAs/1021215[52]
      2006HHIPFL; PPRbandwidth enhancement;asymmetrical waveguide1.5InGaAsP/-30250[53]
      2012Institute ofSemiconductors,CAS(ISCAS)Ridge waveguide; high linear1.3AlGaInAs/624220[54]
      2012FujitsuDBR-DR; BH1.3AlGaInAs/1225.5100[40]
      2013NTTDR; BCB to reduce RC1.3AlGaInAs/834100[41]
      2015ISCASAFL; PPR; complexcoupled grating1.5InGaAsP/527220[47]
      2015HitachiDR; Ridge-BH; ACPM grating;λ-detuned: 13 nm;wide temperature range1.3AlGaInAs/-29.5120[39]
      2016FinisarDR; BCB; wide temperature range1.3AlGaInAs/-29150[55]
      2017FinisarDBR-DR; PPR; BH; BCB;wide temperature range1.3AlGaInAs/-5550[4]
      2019OclaroACPM grating; optimized MQWand SCH to improve Γ;Zn-dopingto improve differential gain; ridgewaveguide; wide temperature range1.3AlGaInAs/-34.2150[5]
    • Table 2. Research progress on DFB lasers with output power exceeding 100 mW

      View table

      Table 2. Research progress on DFB lasers with output power exceeding 100 mW

      YearResearchinstitutionλ /μmKey featureMaterial/No.of MQWsP/mWκLCavitylength /mmReference
      1995Siemens AG1.3Complex coupled gratingInGaAsP/-1151.60.4[66]
      1995Ortel1.5BH; low κL;low RIN (-165 dB/Hz)InGaAsP/4108 (fiberoutput)-1[72]
      2000SensorsUnlimited1.5Broadened waveguides;uniform grating;low RIN (-165 dB/Hz)InGaAsP/316211.5[73]
      2001PrincetonLightwave1.5Double-trench ridgeInGaAsP/-440-2[69]
      2002PrincetonLightwave1.3Double-trench ridgeInGaAsP/-50012[70]
      2007JDSU1.3Optimized κL;broadened waveguides;narrow linewidth(150 kHz);InGaAsP/-6000.7~12[7]
      2010Emcore1.5Uniform grating; BH;narrow linewidth (100 kHz);low RIN (-170 dB/Hz)InGaAsP/-180-1.25[74]
      2013Thales AirSystems1.5Double-trench ridgeInGaAsP/61800.81[64]
      2019ISCAS1.5Double-trench ridge;dilute waveguide;modulation bandwidth8.5 GHzAlGaInAs/416011[71]
    • Table 3. Research progress on narrow linewidth DFB laser

      View table

      Table 3. Research progress on narrow linewidth DFB laser

      YearResearch institutionKey featureLinewidth/kHzLength/mmReference
      1990NECMQW; λ/4 phase shift grating;wavelength detuning2501.5[85]
      1991HitachiMQW; CPM grating; wavelength detuning1701.2[91]
      1992Alcatel AlsthomRechercheStrained MQW; optimizedκL; uniform grating701.45[21]
      1993HitachiStrained MQW; CPM grating3.61.2[6]
      1999Stuttgart UnivStrained MQW;complex coupled grating2500.37[98]
      2007JDSUStrained MQW; large mode areawaveguide and high power (600 mW)1502[7]
      2011Tampere Universityof Technology3rd-order sidewall grating (withoutphase shift); nanoimprint lithography2000.3[92]
      2011EmcoreBH; holographic grating; high power(140 mW); low RIN (-167 dB/Hz)251.25[99]
      2012University ofGlasgowλ/4 phase shift sidewall grating; wavelengthdetuning; high power (210 mW)641.15[93]
    • Table 4. Research progress on low-RIN DFB laser

      View table

      Table 4. Research progress on low-RIN DFB laser

      YearResearchinstitutionKey featureP /mWRIN /(dB/Hz)Length /mmReference
      1995OrtelStrained MQW; optimized κL108<-165 @60 mW0.5[72]
      20103S Photonicsholographic grating; ridge waveguide>130<-165 (0.1--20 GHz)1.5[100]
      2010EmcoreBH; holographic grating;narrow linewidth (25 kHz)180-170(1--20 GHz)1.2[74]
      2012APICCorporationBH; optimized κL>200<-165 (0.1--20 GHz)-170@8 GHz1.8[97]
      2013Thales AirSystemsAsymmetrical cladding; dilutewaveguide; narrow linewidth (300 kHz)180<-160 (0.08--40 GHz)-170 (0.08--2 GHz)1.0[64]
      2018Thales AleniaSpaceMBE; Asymmetrical cladding;double-trench waveguide;narrow linewidth (130 kHz)300<-162 (0.1--20 GHz)1.5[101]
    Tools

    Get Citation

    Copy Citation Text

    Lu Dan, Yang Qiulu, Wang Hao, He Yiming, Qi Hefei, Wang Huan, Zhao Lingjuan, Wang Wei. Review of Semiconductor Distributed Feedback Lasers in the Optical Communication Band[J]. Chinese Journal of Lasers, 2020, 47(7): 701001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Feb. 24, 2020

    Accepted: --

    Published Online: Jul. 10, 2020

    The Author Email:

    DOI:10.3788/CJL202047.0701001

    Topics