Journal of Synthetic Crystals, Volume. 54, Issue 3, 438(2025)
Effect of Substrate Crystal Planes on the Properties of Homoepitaxial n-Ga2O3 Thin Films Grown by MOCVD
[1] [1] ALLIOUX F M, GHASEMIAN M B, XIE W J, et al. Applications of liquid metals in nanotechnology[J]. Nanoscale Horizons, 2022, 7(2): 141-167.
[2] [2] BAHARFAR M, KALANTAR-ZADEH K. Emerging role of liquid metals in sensing[J]. ACS Sensors, 2022, 7(2): 386-408.
[3] [3] BLEVINS J, YANG G. On optical properties and scintillation performance of emerging Ga2O3: crystal growth, emission mechanisms and doping strategies[J]. Materials Research Bulletin, 2021, 144: 111494.
[4] [4] BOMHARD E M. The toxicology of gallium oxide in comparison with gallium arsenide and indium oxide[J]. Environmental Toxicology and Pharmacology, 2020, 80: 103437.
[5] [5] SASAKI K. Prospects for -Ga2O3: now and into the future[J]. Applied Physics Express, 2024, 17(9): 090101.
[6] [6] SUCHIKOVA Y, NAZAROVETS S, POPOV A I. Ga2O3 solar-blind photodetectors: from civilian applications to missile detection and research agenda[J]. Optical Materials, 2024, 157: 116397.
[7] [7] ZHOU J G, CHEN H, FU K, et al. Gallium oxide-based optical nonlinear effects and photonics devices[J]. Journal of Materials Research, 2021, 36(23): 4832-4845.
[8] [8] MUDIYANSELAGE D H, WANG D W, FU H Q. Ultrawide bandgap vertical -(AlxGa1-x)2O3 Schottky barrier diodes on free-standing -Ga2O3 substrates[J]. Journal of Vacuum Science & Technology A, 2023, 41(2): 023201.
[9] [9] WAN H H, LI J S, CHIANG C C, et al. NiO/-(AlxGa1-x)2O3/Ga2O3 heterojunction lateral rectifiers with reverse breakdown voltage>7 kV[J]. Journal of Vacuum Science & Technology A, 2023, 41(3): 032701.
[10] [10] DANNO K, KADO M, HARA T, et al. Large critical field of Li-doped NiO investigated by p+-NiO/n+-Ga2O3 heterojunction diodes[J]. Japanese Journal of Applied Physics, 2023, 62: SF1007.
[11] [11] HAO W B, WU F H, LI W S, et al. Improved vertical -Ga2O3 Schottky barrier diodes with conductivity-modulated p-NiO junction termination extension[J]. IEEE Transactions on Electron Devices, 2023, 70(4): 2129-2134.
[12] [12] WU F H, WANG Y G, JIAN G Z, et al. Superior performance -Ga2O3 junction barrier Schottky diodes implementing p-NiO heterojunction and beveled field plate for hybrid Cockcroft-Walton voltage multiplier[J]. IEEE Transactions on Electron Devices, 2023, 70(3): 1199-1205.
[13] [13] ZHANG J C, DONG P F, DANG K, et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes[J]. Nature Communications, 2022, 13(1): 3900.
[14] [14] YU M, LV C D, YU J G, et al. High-performance photodetector based on sol-gel epitaxially grown / Ga2O3 thin films[J]. Materials Today Communications, 2020, 25: 101532.
[15] [15] YU J G, LOU J S, WANG Z, et al. Surface modification of -Ga2O3 layer using pt nanoparticles for improved deep UV photodetector performance[J]. Journal of Alloys and Compounds, 2021, 872: 159508.
[16] [16] JIAO T, DANG X M, CHEN W, et al. Self-powered Schottky barrier photodiodes based on homoepitaxial Ga2O3 film[J]. Materials Letters, 2023, 349: 134847.
[17] [17] YU H, JIAO T, DANG X M, et al. Self-powered Schottky barrier photodetector with high responsivity based on homoepitaxial Ga2O3 films by MOCVD[J]. Semiconductor Science and Technology, 2024, 39(10): 105009.
[18] [18] JIAO T, CHEN W, YU H, et al. Self-powered flexible UV photodetectors based on MOCVD-grown Ga2O3 films on mica[J]. Materials Science in Semiconductor Processing, 2023, 165: 107706.
[19] [19] GAO C, WANG Y F, FU S H, et al. High-performance solar-blind ultraviolet photodetectors based on -Ga2O3 thin films grown on p-Si (111) substrates with improved material quality via an AlN buffer layer introduced by metal-organic chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2023, 15(32): 38612-38622.
[20] [20] ORITA M, HIRAMATSU H, OHTA H, et al. Preparation of highly conductive, deep ultraviolet transparent -Ga2O3 thin film at low deposition temperatures[J]. Thin Solid Films, 2002, 411(1): 134-139.
[21] [21] DU X J, LI Z, LUAN C N, et al. Preparation and characterization of Sn-doped -Ga2O3 homoepitaxial films by MOCVD[J]. Journal of Materials Science, 2015, 50(8): 3252-3257.
[22] [22] MI W, LI Z, LUAN C N, et al. Transparent conducting tin-doped Ga2O3 films deposited on MgAl2O4 (100) substrates by MOCVD[J]. Ceramics International, 2015, 41(2): 2572-2575.
[23] [23] OU S L, WUU D S, FU Y C, et al. Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition[J]. Materials Chemistry and Physics, 2012, 133(2/3): 700-705.
[24] [24] ZHOU J G, CHEN H, FU H Q, et al. Demonstration of low loss -Ga2O3 optical waveguides in the UV-NIR spectra[C]//Conference on Lasers and Electro-Optics. Washington, DC. Optica Publishing Group, 2020: 251108.
[25] [25] LIU R X, ZHANG Z, YANG Z, et al. Erbium-doped Ga2O3 waveguide for optical amplification[J]. Applied Physical Letters, 2023, 123(15): 151109.
[26] [26] LEACH J H, UDWARY K, RUMSEY J, et al. Halide vapor phase epitaxial growth of -Ga2O3 and -Ga2O3 films[J]. APL Materials, 2018, 7(2): 022504.
[27] [27] MENG L Y, FENG Z X, BHUIYAN A F M A U, et al. High-mobility MOCVD -Ga2O3 epitaxy with fast growth rate using trimethylgallium[J]. Crystal Growth & Design, 2022, 22(6): 3896-3904.
[28] [28] ZHANG Y W, ALEMA F, MAUZE A, et al. MOCVD grown epitaxial -Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature[J]. APL Materials, 2018, 7(2): 022506.
[29] [29] BHATTACHARYYA A, RANGA P, ROY S, et al. Low temperature homoepitaxy of (010) -Ga2O3 by metalorganic vapor phase epitaxy: expanding the growth window[J]. Applied Physical Letters, 2020, 117(14): 142102.
[30] [30] MENG L Y, YU D S, HUANG H L, et al. MOCVD growth of -Ga2O3 on (001) Ga2O3 substrates[J]. Crystal Growth & Design, 2024, 24(9): 3737-3745.
[31] [31] BIN ANOOZ S, GRNEBERG R, WOUTERS C, et al. Step flow growth of -Ga2O3 thin films on vicinal (100) -Ga2O3 substrates grown by MOVPE[J]. Applied Physical Letters, 2020, 116(18): 182106.
[32] [32] CHOU T S, SEYIDOV P, BIN ANOOZ S, et al. Fast homoepitaxial growth of (100) -Ga2O3 thin films via MOVPE[J]. AIP Advances, 2021, 11(11): 115323.
[33] [33] LI Z M, JIAO T, LI W C, et al. Surface chemical composition and HRTEM analysis of heteroepitaxial -Ga2O3 films grown by MOCVD[J]. Applied Surface Science, 2024, 652: 159327.
[37] [37] MU S, WANG M G, PEELAERS H, et al. First-principles surface energies for monoclinic Ga2O3 and Al2O3 and consequences for cracking of (AlxGa1-x)2O3[J]. APL Materials, 2020, 8(9): 091105.
[38] [38] HINUMA Y, GAKE T, OBA F. Band alignment at surfaces and heterointerfaces of Al2O3, Ga2O3, In2O3, and related group-III oxide polymorphs: a first-principles study[J]. Physical Review Materials, 2019, 3(8): 084605.
[39] [39] BERMUDEZ V M. The structure of low-index surfaces of -Ga2O3[J]. Chemical Physics, 2006, 323(2/3): 193-203.
[40] [40] YAO Y Z, ISHIKAWA Y, SUGAWARA Y. Slip planes in monoclinic -Ga2O3 revealed from its {010} face via synchrotron X-ray diffraction and X-ray topography[J]. Japanese Journal of Applied Physics, 2020, 59(12): 125501.
[41] [41] SCHEWSKI R, LION K, FIEDLER A, et al. Step-flow growth in homoepitaxy of -Ga2O3 (100): the influence of the miscut direction and faceting[J]. APL Materials, 2018, 7(2): 022515.
[42] [42] GOTO K, MURAKAMI H, KURAMATA A, et al. Effect of substrate orientation on homoepitaxial growth of -Ga2O3 by halide vapor phase epitaxy[J]. Applied Physics Letters, 2022, 120(10): 102102.
Get Citation
Copy Citation Text
HAN Yu, JIAO Teng, YU Han, SAI Qinglin, CHEN Duanyang, LI Zhen, LI Yihan, ZHANG Zhao, DONG Xin. Effect of Substrate Crystal Planes on the Properties of Homoepitaxial n-Ga2O3 Thin Films Grown by MOCVD[J]. Journal of Synthetic Crystals, 2025, 54(3): 438
Category:
Received: Dec. 10, 2024
Accepted: Apr. 23, 2025
Published Online: Apr. 23, 2025
The Author Email: DONG Xin (dongx@jlu.edu.cn)