Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0900013(2024)

Research Progress of Long-Wave Solid-State Lasers Based on Optical Parametric Oscillation and Amplification Technology

Hai Wang1,2, Lili Zhao1,2, Juntao Tian1,2, Zhiyong Li1,2、*, and Rongqing Tan1,2
Author Affiliations
  • 1Laser Engineering Center, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 2School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China
  • show less
    References(64)

    [1] Xu F, Pan Q K, Chen F et al. Development progress of Fe2+∶ZnSe lasers[J]. Chinese Optics, 14, 458-469(2021).

    [2] Boles G C, Coates R A, Berden G et al. Experimental and theoretical investigations of infrared multiple photon dissociation spectra of asparagine complexes with Zn2+ and Cd2+ and their deamidation processes[J]. The Journal of Physical Chemistry. B, 120, 12486-12500(2016).

    [3] Koch G J, Barnes B W, Petros M et al. Coherent differential absorption lidar measurements of CO2[J]. Applied Optics, 43, 5092-5099(2004).

    [4] Flannigan L, Yoell L, Xu C Q. Mid-wave and long-wave infrared transmitters and detectors for optical satellite communications: a review[J]. Journal of Optics, 24, 043002(2022).

    [5] Gabrieli A, Wright R, Lucey P G et al. Characterization and initial field test of an 8‒14 μm thermal infrared hyperspectral imager for measuring SO2 in volcanic plumes[J]. Bulletin of Volcanology, 78, 73(2016).

    [6] Renz G, Bohn W. Two-micron thulium-pumped-holmium laser source for DIRCM applications[J]. Proceedings of SPIE, 6552, 655202(2007).

    [7] Shayeganrad G. Single laser-based differential absorption lidar (DIAL) for remote profiling atmospheric oxygen[J]. Optics and Lasers in Engineering, 111, 80-85(2018).

    [8] Johnson W, Repasky K S, Carlsten J L. Micropulse differential absorption lidar for identification of carbon sequestration site leakage[J]. Applied Optics, 52, 2994-3003(2013).

    [9] Yao B Q, Yang K, Mi S Y et al. Research progress of high-power Ho∶ YAG lasers and its application for pumping mid-far-infrared nonlinear frequency conversion in ZGP, BGSe and CdSe crystals[J]. Chinese Journal of Lasers, 49, 0101002(2022).

    [10] Polyanskiy M, Pogorelsky I, Babzien M et al. High-peak-power long-wave infrared lasers with CO2 amplifiers[J]. Photonics, 8, 101(2021).

    [11] Lu Y, Zhu Z R, Bai J Z et al. Generation of tail-free short pulses using high-pressure CO2 laser[J]. Chinese Optics Letters, 20, 051401(2022).

    [12] Law K K. Monolithic QCL design approaches for improved reliability and affordability[J]. Proceedings of SPIE, 8993, 899307(2014).

    [13] Deng K, Gao Z Y, Han L et al. Applications and progress of quantum cascade lasers[J]. Electro-Optic Technology Application, 36, 23-29, 35(2021).

    [14] Xu D G, Zhang J X, Wang Y Y et al. Widely-tuned longwave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal[J]. Proceedings of SPIE, 11890, 1189014(2021).

    [15] Qian C P, Yao B Q, Zhao B R et al. High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation[J]. Optics Letters, 44, 715-718(2019).

    [16] Yang X M, Tian K, He L Z et al. Progress on intra-pulse difference frequency generation in femtosecond laser[J]. High Power Laser and Particle Beams, 33, 28-36(2021).

    [17] Chandra S, Allik T H, Catella G et al. Continuously tunable, 6‒14 μm silver-gallium selenide optical parametric oscillator pumped at 1.57 μm[J]. Applied Physics Letters, 71, 584-586(1997).

    [18] Haidar S, Nakamura K, Niwa E J et al. Mid-infrared (5‒12-µm) and limited (5.5‒8.5-µm) single-knob tuning generated by difference-frequency mixing in single-crystal AgGaS2[J]. Applied Optics, 38, 1798-1801(1999).

    [19] Schunermann P G. Recent advances in nonlinear materials for 5-20 µm wavelength generation[C], 353-354(2002).

    [20] Ni Y B, Wu H X, Mao M S et al. Growth and characterization of mid-far infrared optical material CdSe crystal[J]. Optical Materials Express, 8, 1796-1805(2018).

    [21] Yuan Z R, Dou Y W, Fang P et al. Fabrication of mid-infrared ZnGeP2 crystals and devices with large apertures and ultra-low absorption coefficients[J]. Chinese Journal of Lasers, 49, 0101023(2022).

    [22] Meng X H, Li Z, Yao J Y. Property and application of new infrared nonlinear optical crystal BaGa4Se7[J]. Chinese Journal of Lasers, 49, 0101005(2022).

    [23] Li C X, Meng X H, Li Z et al. Hg-based chalcogenides: an intriguing class of infrared nonlinear optical materials[J]. Coordination Chemistry Reviews, 453, 214328(2022).

    [24] Zhao B R, Chen Y, Yao B Q et al. High-efficiency, tunable 8-9 μm BaGa4Se7 optical parametric oscillator pumped at 2.1 μm[J]. Optical Materials Express, 8, 3332-3337(2018).

    [25] Zelmon D E, Hanning E A, Schunemann P G. Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 µm with implications for phase matching in optical frequency-conversion devices[J]. Journal of the Optical Society of America B, 18, 1307-1310(2001).

    [26] Guha S. Updated temperature dependent Sellmeier equations for ZnGeP2 crystals (Conference Presentation)[J]. Proceedings of SPIE, 10902, 1090210(2019).

    [27] Kong H, Bian J T, Yao J Y et al. Temperature tuning of BaGa4Se7 optical parametric oscillator[J]. Chinese Optics Letters, 19, 021901(2021).

    [28] Liu G Y, Chen Y, Yao B Q et al. 3.5 W long-wave infrared ZnGeP2 optical parametric oscillator at 9.8 µm[J]. Optics Letters, 45, 2347-2350(2020).

    [29] Qian C P, Yu T, Liu J et al. A high-energy, narrow-pulse-width, long-wave infrared laser based on ZGP crystal[J]. Crystals, 11, 656(2021).

    [30] Meng D D, Qiao Z D, Gao B G et al. Experimental study on tunable characteristics of optical parametric oscillator based on ZnGeP2 in long-infared dual-band[J]. Infrared and Laser Engineering, 51, 2021G008(2022).

    [31] Miyamoto K, Ito H. Wavelength-agile mid-infrared (5- 10 μm) generation using a galvano-controlled KTiOPO4 optical parametric oscillator[J]. Optics Letters, 32, 274-276(2007).

    [32] Qian C P, Shen Y J, Dai T Y et al. High power far-infrared optical parametric oscillator with high beam quality[J]. Proceedings of SPIE, 10016, 100160G(2016).

    [33] Li L J, Yang X N, Yang Y Q et al. A high-power, long-wavelength infrared ZnGeP2 OPO pumped by a Q-switched Tm, Ho: GdVO4 laser[J]. Journal of Russian Laser Research, 38, 305-310(2017).

    [34] Qian C P, Duan X M, Yao B Q et al. 11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier[J]. Optics Express, 26, 30195-30201(2018).

    [35] Liu G Y, Chen Y, Yao B Q et al. Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals[J]. Applied Physics B, 125, 233(2019).

    [36] Shen Y J, Qian C P, Duan X M et al. High-power long-wave infrared laser based on polarization beam coupling technique[J]. High Power Laser Science and Engineering, 8, e12(2020).

    [37] Qian C P, Yu T, Liu J et al. 5.4 W, 9.4 ns pulse width, long-wave infrared ZGP OPO pumped by Ho: YAG MOPA system[J]. IEEE Photonics Journal, 13, 3078131(2021).

    [38] Wei L, Wu D C, Liu D et al. Long-wave infrared ZnGeP2 optical parametric oscillator pumped by Ho∶YLF laser[J]. Chinese Journal of Lasers, 48, 0101002(2021).

    [39] Cao L Q, Zhao B J, Zhu S F et al. Annealing and optical homogeneity of large ZnGeP2 single crystal[J]. Rare Metals, 41, 3214-3219(2022).

    [40] Kolker D B, Sherstov I V, Kostyukova N Y et al. Combined optical parametric oscillator with continuous tuning of radiation wavelength in the spectral range 2.5–10.8 μm[J]. Quantum Electronics, 47, 14-19(2017).

    [41] Yang F, Yao J Y, Guo Y W et al. High-energy continuously tunable 8‒14 μm picosecond coherent radiation generation from BGSe-OPA pumped by 1064nm laser[J]. Optics & Laser Technology, 125, 106040(2020).

    [42] Yang K, Li J H, Gao Y Z et al. Watt-level long-wave infrared CdSe pulsed-nanosecond optical parametric oscillator[J]. Optics & Laser Technology, 145, 107491(2022).

    [43] Popien S, Beutler M, Rimke I et al. Femtosecond Yb-fiber laser synchronously pumped HgGa2S4 optical parametric oscillator tunable in the 4.4- to 12-μm range[J]. Optical Engineering, 57, 111802(2018).

    [44] Kolker D B, Kostyukova N Y, Boyko A A et al. Widely tunable (2.6-10.4 μm) BaGa4Se7 optical parametric oscillator pumped by a Q-switched Nd∶YLiF4 laser[J]. Journal of Physics Communications, 2, 2399-6528(2018).

    [45] Hu S W, Wang L, Guo Y W et al. High-conversion-efficiency tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.79-μm laser[J]. Optics Letters, 44, 2201-2203(2019).

    [46] Xu D G, Zhang J X, He Y X et al. High-energy, tunable, long-wave mid-infrared optical parametric oscillator based on BaGa4Se7 crystal[J]. Optics Letters, 45, 5287-5290(2020).

    [47] Chen Y, Liu G Y, Yang C et al. 1 W, 10.1 µm, CdSe optical parametric oscillator with continuous-wave seed injection[J]. Optics Letters, 45, 2119-2122(2020).

    [48] Ni Y B, Han W M, Wu H X et al. Growth and application of large size far infrared CdSe nonlinear crystal[J]. Journal of Synthetic Crystals, 49, 1488-1489(2020).

    [49] Wei L, Li B, Chen G et al. Long-wave infrared CdSe optical parametric oscillator[J]. Chinese Journal of Lasers, 48, 2401004(2021).

    [50] Tian J T, Li Z Y, Zhao L L et al. Long-wave infrared ZnGeP2 optical parametric oscillator with improved tunability by use of a cavity compensation technique[J]. Optical Engineering, 61, 076102(2022).

    [51] Tian J T, Li H, Zhao L L et al. Tunable long-wave infrared optical parametric oscillator based on temperature-adjustable ZnGeP2[J]. Chinese Journal of Optics, 16, 861-867(2023).

    [52] Wang H, Tian J T, Zhao L L et al. ZnGeP2 optical parametric oscillator with wide temperature tuning[J]. Optics Communications, 542, 129584(2023).

    [53] Li D, Yu Y J, Li Y et al. Narrow linewidth 2.1 μm optical parametric oscillator with intra-cavity configuration based on wavelength-locked 878.6 nm in-band pumping[J]. Optics & Laser Technology, 131, 106412(2020).

    [54] Bian Q, Bo Y, Zuo J W et al. High-power wavelength-tunable and power-ratio-controllable dual-wavelength operation at 1319 nm and 1338 nm in a Q-switched Nd∶YAG laser[J]. Photonics Research, 10, 2287-2292(2022).

    [55] Han J L, Zhang J, Shan X N et al. High-power narrow-linewidth diode laser pump source based on high-efficiency external cavity feedback technology[J]. Chinese Optics Letters, 20, 081401(2022).

    [56] Zhang Z L, Zhao Y F, Liu H et al. Study on linewidth compression at 3.8 μm with multiple F-P etalon pumped by compound intra-cavity optical parametric oscillator[J]. Infrared Physics & Technology, 124, 104234(2022).

    [57] Vodopyanov K L, Ganikhanov F, Maffetone J P et al. ZnGeP2 optical parametric oscillator with 3.8-12.4 μm tunability[J]. Optics Letters, 25, 841-843(2000).

    [58] Bian J T, Kong H, Ye Q et al. Narrow-linewidth BaGa4Se7 optical parametric oscillator[J]. Chinese Optics Letters, 20, 041901(2022).

    [59] Armougom J, Clément Q, Melkonian J M et al. Single-frequency tunable long-wave infrared OP-GaAs OPO for gas sensing[J]. Proceedings of SPIE, 10088, 100880Z(2017).

    [60] Wang J, Yuan L G, Zhang Y W et al. Generation of 320 mW at 10.20 μm based on CdSe long-wave infrared crystal[J]. Journal of Crystal Growth, 491, 16-19(2018).

    [61] Piccoli R, Pirzio F, Agnesi A et al. Narrow-bandwidth, picosecond, 1064-nm pumped optical parametric generator for the mid-IR based on HgGa2S4[J]. Optics Letters, 39, 4895-4898(2014).

    [62] Kostyukova N Y, Boyko A A, Badikov V et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Optics Letters, 41, 3667-3670(2016).

    [63] Hayrapetyan V S, Makeev A V, Shaburova A V. Optical parametric oscillator on HgS crystal with 5-9 µm frequency reset[J]. Proceedings of SPIE, 11208, 112081P(2019).

    [64] Liu G Y, Chen Y, Li Z et al. High-beam-quality 2.1 µm pumped mid-infrared type-II phase-matching BaGa4Se7 optical parametric oscillator with a ZnGeP2 amplifier[J]. Optics Letters, 45, 3805-3808(2020).

    Tools

    Get Citation

    Copy Citation Text

    Hai Wang, Lili Zhao, Juntao Tian, Zhiyong Li, Rongqing Tan. Research Progress of Long-Wave Solid-State Lasers Based on Optical Parametric Oscillation and Amplification Technology[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0900013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Dec. 23, 2022

    Accepted: Feb. 6, 2023

    Published Online: May. 10, 2024

    The Author Email: Li Zhiyong (zhiyongli@mail.ie.ac.cn)

    DOI:10.3788/LOP223375

    CSTR:32186.14.LOP223375

    Topics