Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0900013(2024)

Research Progress of Long-Wave Solid-State Lasers Based on Optical Parametric Oscillation and Amplification Technology

Hai Wang1,2, Lili Zhao1,2, Juntao Tian1,2, Zhiyong Li1,2、*, and Rongqing Tan1,2
Author Affiliations
  • 1Laser Engineering Center, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 2School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China
  • show less
    Figures & Tables(11)
    Wavelength and full bandwidth of ZGP crystal at angle tuning. (a) (b) Class Ⅰ phase matching; (c) (d) class Ⅱ phase matching
    Wavelength and full bandwidth of ZGP crystal at temperature tuning. (a)(b) Class Ⅰ phase matching,θ=50.9°; (c) (d) class Ⅱ phase matching,θ=63.1°
    Wavelength and full bandwidth of ZGP crystal at different pump source. (a) (b) 2 μm pump source,λp=2.05 μm; (c) (d) 1 μm pump source,λp=1.06 μm
    ZGP OPO + OPA under different phase-matching conditions [35]
    ZGP OPO realizes the long-wave infrared tunable laser under class I phase matching [50]. (a) Schematic diagram of the device; (b) idler output characteristics
    Idler output characteristics of ZGP OPO under temperature tuning [51]
    Schematic of linewidth narrowing for ZGP OPO [57]
    • Table 1. Characterization of the long-wave nonlinear crystals

      View table

      Table 1. Characterization of the long-wave nonlinear crystals

      Crystal propertiesAgGaSe2AgGaS2GaSeCdSeZnGeP2BaGa4Se7HgGa2S4
      SymmetrySquareSquareHexagonalHexagonalSquareMonoclinicSquare
      Point group4¯2m4¯2m6¯2m6¯mm4¯2mm4¯
      Fusing point /℃8601238-152510251020880
      Pump source /μm1.5‒21‒21‒2221‒31‒2
      Lattice constant /Å

      5.992(a)

      10.886(c)

      5.756(a)

      10.301(c)

      3.742(a)

      15.918(c)

      7.625(a)

      6.511(b)

      14.702(c)

      Thermal conductivity /(W·cm-1·K-10.0110.015

      0.162(//c)

      0.02(⊥c)

      0.060.360.0070.025
      Damage thresholdLowLowLowLowHighVery highHigh
      Light range /μm0.7‒180.5‒130.65‒180.75‒200.74‒120.47‒180.5‒13
      Optical symmetryNegative uniaxialNegative uniaxialNegative uniaxialPositive uniaxialPositive uniaxialBiaxialNegative uniaxial
      deff /(pm·V-1d14=33d14=13d22=56d15=18d14=75d16=31.5d14=24
      Reference17181920212223
    • Table 2. Research of ZGP OPO/OPA technology

      View table

      Table 2. Research of ZGP OPO/OPA technology

      YearPump sourceMethodIdler wavelength /μmOutput performance
      200731KTP OPO(@1.95-2.20 μm)I-OPO5.0-10.00.4 mJ(@9.0 μm)
      201632Ho∶YAG(@2.09 μm)I-OPO8.0-8.33.2 W(@8.2 μm)
      201733Tm,Ho∶GdVO4(@2.05 μm)I-OPO7.8-9.91.71 W(@8.08 μm)
      201834Ho∶YAG(@2.09 μm)I-OPO+OPA8.311.4 W(@20 kHz)
      201935Ho∶YAG(@2.09 μm)II-OPO+I-OPA8.212.6 W(@10 kHz)
      202036Ho∶YAG(@2.09 μm)OPO+OPA8.37.0 W
      202028Ho∶YAG(@2.09 μm)I/II-OPO9.2-11.03.51 W(@9.8 μm)
      20212937Ho∶YAG(@2.09 μm)OPO8.2

      3.15 W(@1 kHz,8.1 ns)

      5.48 W(@3 kHz,9.45 ns)

      202138Ho∶YLF(@2.05 μm)I-OPO8.13.2 W(@10 kHz,27.11 ns)
      202230KTP OPO(@2.107-2.154 μm)I-OPO7.94-9.07,10.2-10.820.8 mJ(@8.03 μm,50 Hz)
    • Table 3. Research of long-wave OPO/OPA technology of other crystals

      View table

      Table 3. Research of long-wave OPO/OPA technology of other crystals

      YearPump sourceMethodIdler wavelength /μmOutput performance
      201740Nd∶YLF(@1.053 μm)HGS(II-OPO)4.18-10.81 μJ(@10‒10.8 μm)
      201824Ho∶YAG(@2.09 μm)BGSe(II-OPO)8.0-9.0314 mW(@8.925 μm)
      201843Yb-fiber(@1.035 μm)HGS(II-OPO)4.4-12.0
      201844Nd∶YLF(@1.053 μm)BGSe(I-OPO)2.6-10.414 μJ(@8.07 μm)
      201945Cr,Er∶YSGG(@2.79 μm)BGSe(I-OPO)3.94-9.55
      202046Nd∶YAG(@1.064 μm)BGSe(I-OPO)8.0-14.01.05 mJ(@11.0 μm,10Hz)
      202041Nd∶YAG(@1.064 μm)BGSe(I-OPA)8.0-14.0230 μJ(@9.5 μm)
      202047Ho∶YAG(@2.09 μm)CdSe(II-OPO)11.01802 mW(@1 kHz)
      202048Ho∶YAG(@2.09 μm)CdSe(II-OPO)10.1-10.81.05 W(@1 kHz)
      202149Ho∶YLF(@2.05 μm)CdSe(II-OPO)12.5-12.8526 mW(@12.5 μm,5 kHz)
      202242Ho∶YAG(@2.09 μm)CdSe(II-OPO)10.9-11.21.26 W(@10.9 μm)
    • Table 4. Research of long‐wave solid‑state laser with narrow linewidth

      View table

      Table 4. Research of long‐wave solid‑state laser with narrow linewidth

      YearPump sourceMethodIdler wavelength /μmOutput linewidth
      201461Nd∶YAG(@1.064 μm)

      HGS(II-OPG)

      HGS(II-OPA)

      3.85-10.0

      83 nm(@6.1 μm)

      9 nm(@6.1 μm)

      201662Nd∶YAG(@1.064 μm)BGSe(I-OPO)2.7-17.09 nm(@7.2 μm)
      201759Tm∶YAP(@1.938 μm)OP-GaAs10.4-11.1<1.32 pm(@2.38 μm)
      201824Ho∶YAG(@2.09 μm)BGSe(II-OPO)8.0-9.040.67 nm(@8.67 μm)
      201860Ho∶YLF(@2.05 μm)CdSe(II-OPO)10.278 nm(@5 kHz)
      201935Ho∶YAG(@2.09 μm)

      ZGP(II-OPO)

      (II+II-OPA)

      8.2

      66 nm

      77 nm

      201963Nd∶YAG(@1.064 μm)HGS(II-OPO)5.0-9.01.45 nm(@5.39 μm)
      202047Ho∶YAG(@2.09 μm)CdSe(II-OPO)11.017.3 nm
      202250Ho∶YAG(@2.09 μm)ZGP(I-OPO)8.02-9.1529.5 nm(@8.02 μm)
      202251Ho∶YAG(@2.09 μm)ZGP(I-OPO)7.53-8.7718.1 nm(@7.85 μm)
    Tools

    Get Citation

    Copy Citation Text

    Hai Wang, Lili Zhao, Juntao Tian, Zhiyong Li, Rongqing Tan. Research Progress of Long-Wave Solid-State Lasers Based on Optical Parametric Oscillation and Amplification Technology[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0900013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Dec. 23, 2022

    Accepted: Feb. 6, 2023

    Published Online: May. 10, 2024

    The Author Email: Zhiyong Li (zhiyongli@mail.ie.ac.cn)

    DOI:10.3788/LOP223375

    CSTR:32186.14.LOP223375

    Topics