Chinese Journal of Lasers, Volume. 50, Issue 20, 2000001(2023)

Machine Learning for Laser Micro/Nano Manufacturing: Applications and Prospects

Wei Gong1, Wenhua Zhao1, Xintian Wang1, Zhenze Li1, Yi Wang2, Xinjing Zhao1, Qing Wang1, Yanhui Wang1、*, Lei Wang1, and Qidai Chen1
Author Affiliations
  • 1College of Electronic Science & Engineering, State Key Lab of Integrated Optoelectronics, Jilin University, Changchun 130012, Jilin , China
  • 2Department of Precision Instrument, State Key Lab of Precision Measurement Technology & Instruments, Tsinghua University, Beijing 100084, China
  • show less
    References(98)

    [1] Moradi M, Mehrabi O, Azdast T et al. Enhancement of low power CO2 laser cutting process for injection molded polycarbonate[J]. Optics & Laser Technology, 96, 208-218(2017).

    [2] Schulz W, Becker D, Franke J et al. Heat conduction losses in laser cutting of metals[J]. Journal of Physics D: Applied Physics, 26, 1357-1363(1993).

    [3] Choudhury I A, Shirley S. Laser cutting of polymeric materials: an experimental investigation[J]. Optics & Laser Technology, 42, 503-508(2010).

    [4] Rauh B, Kreling S, Kolb M et al. UV-laser cleaning and surface characterization of an aerospace carbon fibre reinforced polymer[J]. International Journal of Adhesion and Adhesives, 82, 50-59(2018).

    [5] Shi T Y, Wang C M, Mi G Y et al. A study of microstructure and mechanical properties of aluminum alloy using laser cleaning[J]. Journal of Manufacturing Processes, 42, 60-66(2019).

    [6] Park H K, Grigoropoulos C P, Leung W P et al. A practical excimer laser-based cleaning tool for removal of surface contaminants[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17, 631-643(1994).

    [7] Salonitis K, Stournaras A, Tsoukantas G et al. A theoretical and experimental investigation on limitations of pulsed laser drilling[J]. Journal of Materials Processing Technology, 183, 96-103(2007).

    [8] Gautam G D, Pandey A K. Pulsed Nd∶YAG laser beam drilling: a review[J]. Optics & Laser Technology, 100, 183-215(2018).

    [9] Hwang D J, Choi T Y, Grigoropoulos C P. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass[J]. Applied Physics A, 79, 605-612(2004).

    [10] Yue Y F, Kurokawa T. Designing responsive photonic crystal patterns by using laser engraving[J]. ACS Applied Materials & Interfaces, 11, 10841-10847(2019).

    [11] Uh J, Lee J S, Kim Y H et al. Laser engraving of micro-patterns on roll surfaces[J]. ISIJ International, 42, 1266-1272(2002).

    [12] Lahoz R, de la Fuente G F, Pedra J M et al. Laser engraving of ceramic tiles[J]. International Journal of Applied Ceramic Technology, 8, 1208-1217(2011).

    [13] Ravi-Kumar S, Lies B, Zhang X A et al. Laser ablation of polymers: a review[J]. Polymer International, 68, 1391-1401(2019).

    [14] Preuss S, Demchuk A, Stuke M. Sub-picosecond UV laser ablation of metals[J]. Applied Physics A, 61, 33-37(1995).

    [15] Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues[J]. Chemical Reviews, 103, 577-644(2003).

    [16] Scotti G, Matilainen V, Kanninen P et al. Laser additive manufacturing of stainless steel micro fuel cells[J]. Journal of Power Sources, 272, 356-361(2014).

    [17] Zhu Y Y, Li J, Tian X J et al. Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing[J]. Materials Science and Engineering: A, 607, 427-434(2014).

    [18] Leung C L A, Marussi S, Towrie M et al. The effect of powder oxidation on defect formation in laser additive manufacturing[J]. Acta Materialia, 166, 294-305(2019).

    [19] Akman E, Demir A, Canel T et al. Laser welding of Ti6Al4V titanium alloys[J]. Journal of Materials Processing Technology, 209, 3705-3713(2009).

    [20] Cao X J, Jahazi M, Immarigeon J P et al. A review of laser welding techniques for magnesium alloys[J]. Journal of Materials Processing Technology, 171, 188-204(2006).

    [21] Hong K M, Shin Y C. Prospects of laser welding technology in the automotive industry: a review[J]. Journal of Materials Processing Technology, 245, 46-69(2017).

    [22] Samant A N, Dahotre N B. Laser machining of structural ceramics: a review[J]. Journal of the European Ceramic Society, 29, 969-993(2009).

    [23] Yang L L, Wei J T, Ma Z et al. The fabrication of micro/nano structures by laser machining[J]. Nanomaterials, 9, 1789(2019).

    [24] Meijer J, Du K, Gillner A et al. Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons[J]. CIRP Annals, 51, 531-550(2002).

    [25] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).

    [26] Negarestani R, Sundar M, Sheikh M A et al. Numerical simulation of laser machining of carbon-fibre-reinforced composites[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224, 1017-1027(2010).

    [27] Zhong Y G, Xue K, Shi D Y. An improved artificial neural network for laser welding parameter selection and prediction[J]. The International Journal of Advanced Manufacturing Technology, 68, 755-762(2013).

    [28] Velli M C, Tsibidis G D, Mimidis A et al. Predictive modeling approaches in laser-based material processing[J]. Journal of Applied Physics, 128, 183102(2020).

    [29] Vagheesan S, Govindarajalu J. Hybrid neural network-particle swarm optimization algorithm and neural network-genetic algorithm for the optimization of quality characteristics during CO2 laser cutting of aluminium alloy[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 1-15(2019).

    [30] Teixidor D, Grzenda M, Bustillo A et al. Modeling pulsed laser micromachining of micro geometries using machine-learning techniques[J]. Journal of Intelligent Manufacturing, 26, 801-814(2015).

    [31] Wang R J, Li X H, Wu Q D et al. Optimizing process parameters for selective laser sintering based on neural network and genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 42, 1035-1042(2009).

    [32] Rajaram N, Sheikh-Ahmad J, Cheraghi S H. CO2 laser cut quality of 4130 steel[J]. International Journal of Machine Tools and Manufacture, 43, 351-358(2003).

    [33] Park Y W, Rhee S. Process modeling and parameter optimization using neural network and genetic algorithms for aluminum laser welding automation[J]. The International Journal of Advanced Manufacturing Technology, 37, 1014-1021(2008).

    [34] Omidvar M, Fard R K, Sohrabpoor H et al. Selection of laser bending process parameters for maximal deformation angle through neural network and teaching-learning-based optimization algorithm[J]. Soft Computing, 19, 609-620(2015).

    [35] Olabi A G, Casalino G, Benyounis K Y et al. An ANN and Taguchi algorithms integrated approach to the optimization of CO2 laser welding[J]. Advances in Engineering Software, 37, 643-648(2006).

    [36] Nakhjavani O B, Ghoreishi M. Multi criteria optimization of laser percussion drilling process using artificial neural network model combined with genetic algorithm[J]. Materials and Manufacturing Processes, 21, 11-18(2006).

    [37] McDonnell M D T, Arnaldo D, Pelletier E et al. Machine learning for multi-dimensional optimisation and predictive visualisation of laser machining[J]. Journal of Intelligent Manufacturing, 32, 1471-1483(2021).

    [38] Li K S, Ma Z Y, Fu P et al. Quantitative evaluation of surface crack depth with a scanning laser source based on particle swarm optimization-neural network[J]. NDT & E International, 98, 208-214(2018).

    [39] Huang Y, Liu Y, Zhu G L. Parameter optimization of laser scribing technics of 30Q130 grain-oriented silicon steel based on genetic neural network[J]. Applied Mechanics and Materials, 37/38, 844-848(2010).

    [40] Günther J, Pilarski P M, Helfrich G et al. First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning[J]. Procedia Technology, 15, 474-483(2014).

    [41] Ghosal S, Chaki S. Estimation and optimization of depth of penetration in hybrid CO2 laser-MIG welding using ANN-optimization hybrid model[J]. The International Journal of Advanced Manufacturing Technology, 47, 1149-1157(2010).

    [42] Ding H, Wang Z C, Guo Y C. Multi-objective optimization of fiber laser cutting based on generalized regression neural network and non-dominated sorting genetic algorithm[J]. Infrared Physics & Technology, 108, 103337(2020).

    [43] Dhara S K, Kuar A S, Mitra S. An artificial neural network approach on parametric optimization of laser micro-machining of die-steel[J]. The International Journal of Advanced Manufacturing Technology, 39, 39-46(2008).

    [44] Zhang Y Q, Chen W Z, Zhang X D et al. Synthetic evaluation and neural-network prediction of laser cutting quality[J]. Proceedings of SPIE, 5629, 237-246(2005).

    [45] Ciurana J, Arias G, Ozel T. Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel[J]. Materials and Manufacturing Processes, 24, 358-368(2009).

    [46] Biswas R, Kuar A S, Biswas S K et al. Artificial neural network modelling of Nd∶YAG laser microdrilling on titanium nitride‒alumina composite[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224, 473-482(2010).

    [47] Zhang Y J, Hong G S, Ye D S et al. Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring[J]. Materials & Design, 156, 458-469(2018).

    [48] You D Y, Gao X D, Katayama S. WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM[J]. IEEE Transactions on Industrial Electronics, 62, 628-636(2015).

    [49] Ye D S, Hsi Fuh J Y, Zhang Y J et al. In situ monitoring of selective laser melting using plume and spatter signatures by deep belief networks[J]. ISA Transactions, 81, 96-104(2018).

    [50] Scime L, Siddel D, Baird S et al. Layer-wise anomaly detection and classification for powder bed additive manufacturing processes: a machine-agnostic algorithm for real-time pixel-wise semantic segmentation[J]. Additive Manufacturing, 36, 101453(2020).

    [51] Scime L, Beuth J. Using machine learning to identify in situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, 25, 151-165(2019).

    [52] Scime L, Beuth J. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm[J]. Additive Manufacturing, 19, 114-126(2018).

    [53] Scime L, Beuth J. A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, 24, 273-286(2018).

    [54] Okaro I A, Jayasinghe S, Sutcliffe C et al. Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning[J]. Additive Manufacturing, 27, 42-53(2019).

    [55] Khanzadeh M, Chowdhury S, Tschopp M A et al. In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes[J]. IISE Transactions, 51, 437-455(2019).

    [56] Jafari-Marandi R, Khanzadeh M, Tian W et al. From in-situ monitoring toward high-throughput process control: cost-driven decision-making framework for laser-based additive manufacturing[J]. Journal of Manufacturing Systems, 51, 29-41(2019).

    [57] Grasso M, Demir A G, Previtali B et al. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume[J]. Robotics and Computer-Integrated Manufacturing, 49, 229-239(2018).

    [58] Caggiano A, Zhang J J, Alfieri V et al. Machine learning-based image processing for on-line defect recognition in additive manufacturing[J]. CIRP Annals, 68, 451-454(2019).

    [59] Ye D S, Hong G S, Zhang Y J et al. Defect detection in selective laser melting technology by acoustic signals with deep belief networks[J]. The International Journal of Advanced Manufacturing Technology, 96, 2791-2801(2018).

    [60] Wu H X, Yu Z H, Wang Y. Real-time FDM machine condition monitoring and diagnosis based on acoustic emission and hidden semi-Markov model[J]. The International Journal of Advanced Manufacturing Technology, 90, 2027-2036(2017).

    [61] Shevchik S A, Kenel C, Leinenbach C et al. Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks[J]. Additive Manufacturing, 21, 598-604(2018).

    [62] Xie Y H, Praeger M, Grant-Jacob J A et al. Motion control for laser machining via reinforcement learning[J]. Optics Express, 30, 20963-20979(2022).

    [63] Jordan M I, Mitchell T M. Machine learning: trends, perspectives, and prospects[J]. Science, 349, 255-260(2015).

    [64] Mitchell T M[M]. Machine learning(1997).

    [65] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [66] Zhou Z H[M]. Machine Learning(2021).

    [67] Goodfellow I, Bengio Y, Courville A[M]. Deep learning(2016).

    [68] Cybenko G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of Control, Signals and Systems, 2, 303-314(1989).

    [69] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 2, 359-366(1989).

    [70] Hornik K, Stinchcombe M, White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[J]. Neural Networks, 3, 551-560(1990).

    [71] Mills B, Heath D J, Grant-Jacob J A et al. Predictive capabilities for laser machining via a neural network[J]. Optics Express, 26, 17245-17253(2018).

    [72] McDonnell M D T, Grant-Jacob J A, Praeger M et al. Identification of spatial intensity profiles from femtosecond laser machined depth profiles via neural networks[J]. Optics Express, 29, 36469-36486(2021).

    [73] Heath D J, Grant-Jacob J A, Xie Y H et al. Machine learning for 3D simulated visualization of laser machining[J]. Optics Express, 26, 21574-21584(2018).

    [74] Zhang D K, Guo L, Karniadakis G E. Learning in modal space: solving time-dependent stochastic PDEs using physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 42, A639-A665(2020).

    [75] Sirignano J, Spiliopoulos K. DGM: a deep learning algorithm for solving partial differential equations[J]. Journal of Computational Physics, 375, 1339-1364(2018).

    [76] Sheng H L, Yang C. PFNN: a penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries[J]. Journal of Computational Physics, 428, 110085(2021).

    [77] Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 378, 686-707(2019).

    [78] Raissi M, Karniadakis G E. Hidden physics models: machine learning of nonlinear partial differential equations[J]. Journal of Computational Physics, 357, 125-141(2018).

    [79] Mao Z P, Jagtap A D, Karniadakis G E. Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 360, 112789(2020).

    [80] Karniadakis G E, Kevrekidis I G, Lu L et al. Physics-informed machine learning[J]. Nature Reviews Physics, 3, 422-440(2021).

    [81] Xie Y H, Heath D J, Grant-Jacob J A et al. Deep learning for the monitoring and process control of femtosecond laser machining[J]. Journal of Physics: Photonics, 1, 035002(2019).

    [82] Kwon O, Kim H G, Ham M J et al. A deep neural network for classification of melt-pool images in metal additive manufacturing[J]. Journal of Intelligent Manufacturing, 31, 375-386(2020).

    [83] Yang B, Ma D N, Liu W W et al. Deep-learning-based colorimetric polarization-angle detection with metasurfaces[J]. Optica, 9, 217-220(2022).

    [84] Scime L, Beuth J. Melt pool geometry and morphology variability for the Inconel 718 alloy in a laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, 29, 100830(2019).

    [85] Ren Z S, Gao L, Clark S J et al. Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion[J]. Science, 379, 89-94(2023).

    [86] Balling P, Schou J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films[J]. Reports on Progress in Physics, 76, 036502(2013).

    [87] Déziel J L, Dubé L J, Varin C. Dynamical rate equation model for femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 104, 045201(2021).

    [88] Gruzdev V E, Komolov V L, Przhibel’skiĭ S G. Ionization of nanoparticles by supershort moderate-intensity laser pulses[J]. Journal of Optical Technology, 81, 256-261(2014).

    [89] Stoian R. Volume photoinscription of glasses: three-dimensional micro- and nanostructuring with ultrashort laser pulses[J]. Applied Physics A, 126, 1-30(2020).

    [90] Zhang Z Y, Liu Z C, Wu D Z. Prediction of melt pool temperature in directed energy deposition using machine learning[J]. Additive Manufacturing, 37, 101692(2021).

    [91] Zhu Q M, Liu Z L, Yan J H. Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks[J]. Computational Mechanics, 67, 619-635(2021).

    [92] Chaudhari S, Mithal V, Polatkan G et al. An attentive survey of attention models[J]. ACM Transactions on Intelligent Systems and Technology, 12, 53(2021).

    [93] Joshi M, Chen D Q, Liu Y H et al. SpanBERT: improving pre-training by representing and predicting spans[J]. Transactions of the Association for Computational Linguistics, 8, 64-77(2020).

    [97] Shrivastava A, Pfister T, Tuzel O et al. Learning from simulated and unsupervised images through adversarial training[C], 2242-2251(2017).

    [98] Zhou B L, Khosla A, Lapedriza A et al. Learning deep features for discriminative localization[C], 2921-2929(2016).

    Tools

    Get Citation

    Copy Citation Text

    Wei Gong, Wenhua Zhao, Xintian Wang, Zhenze Li, Yi Wang, Xinjing Zhao, Qing Wang, Yanhui Wang, Lei Wang, Qidai Chen. Machine Learning for Laser Micro/Nano Manufacturing: Applications and Prospects[J]. Chinese Journal of Lasers, 2023, 50(20): 2000001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: May. 11, 2023

    Accepted: Jul. 11, 2023

    Published Online: Oct. 18, 2023

    The Author Email: Wang Yanhui (yanhuiwang@jlu.edu.cn)

    DOI:10.3788/CJL230827

    Topics