Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0637006(2025)

Multi-Head Mixed Self-Attention Mechanism for Object Detection

Qinghua Su*, Jianhong Mu, Wenhui Liang, Xiyu Wang, and Juntao Li
Author Affiliations
  • School of Information, Beijing Wuzi University, Beijing 101149, China
  • show less
    References(31)

    [8] Zhao Y M, Wang J C, Ren H E et al. A small object detection algorithm integrated with ReFPN and compound attention mechanism[J]. Journal of Harbin University of Science and Technology, 27, 85-91(2022).

    [9] Feng Z Q, Xie Z J, Bao Z W et al. Real-time dense small object detection algorithm for UAV based on improved YOLOv5[J]. Acta Aeronautica et Astronautica Sinica, 44, 327106(2023).

    [17] Hu H N, Huang L Y, Yang H G et al. Improved YOLOv8n lightweight honeycomb ceramic defect-detection algorithm[J]. Laser & Optoelectronics Progress, 61, 2212006(2024).

    [26] Veličković P, Cucurull G, Casanova A et al. Graph attention networks[J]. arXiv preprint(2017).

    [27] Xie G B, Liang L H, Lin Z Y et al. Lightweight underwater target detection algorithm based on improved YOLOv8n[J]. Laser & Optoelectronics Progress, 61, 2437006(2024).

    [28] Yang M Q, Zuo X Q, Dong Y. Ship target detection method in SAR images based on improved YOLOv8s[J]. Laser & Optoelectronics Progress, 61, 2228001(2024).

    [30] Tao Y, Zhong B Q, Zhao W B et al. Underwater object detection algorithm integrating explicit visual center and attention mechanism[J]. Laser & Optoelectronics Progress, 61, 1237009(2024).

    Tools

    Get Citation

    Copy Citation Text

    Qinghua Su, Jianhong Mu, Wenhui Liang, Xiyu Wang, Juntao Li. Multi-Head Mixed Self-Attention Mechanism for Object Detection[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0637006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Jun. 19, 2024

    Accepted: Aug. 1, 2024

    Published Online: Mar. 6, 2025

    The Author Email:

    DOI:10.3788/LOP241509

    CSTR:32186.14.LOP241509

    Topics