Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0637006(2025)

Multi-Head Mixed Self-Attention Mechanism for Object Detection

Qinghua Su*, Jianhong Mu, Wenhui Liang, Xiyu Wang, and Juntao Li
Author Affiliations
  • School of Information, Beijing Wuzi University, Beijing 101149, China
  • show less
    Figures & Tables(15)
    Structure of ECA module
    Structure of YOLOv8+MMSA model
    Principle of MMSA
    Principle diagram of GMP, LMP, and UNAP
    Structures of C2f module and C2f_MMSA module
    Confusion matrices of different models on the BDD100K dataset. (a) YOLOv5n; (b) YOLOv10n; (c) YOLOv8n; (d) YOLOv8n with MMSA
    Comparison of heat maps from different datasets. (a) Original images; (b) before adding MMSA; (c) after adding MMSA
    • Table 1. Experimental results on BDD100k dataset for different numbers of heads within MMSA

      View table

      Table 1. Experimental results on BDD100k dataset for different numbers of heads within MMSA

      Number of headmAP@0.5 /%Model size /MB
      452.26.14
      852.46.14
      1652.56.14
      3252.26.14
    • Table 2. Experimental results on BDD100k dataset for different sizes of local pooling region within MMSA

      View table

      Table 2. Experimental results on BDD100k dataset for different sizes of local pooling region within MMSA

      Size of local pooling regionmAP@0.5 /%Model size /MB
      152.36.14
      252.66.14
      552.56.14
      1051.86.14
    • Table 3. Comparison results of adding different MMSA on different parts tested in BDD100K dataset

      View table

      Table 3. Comparison results of adding different MMSA on different parts tested in BDD100K dataset

      Number of headSize of local pooling regionBackboneNeckmAP@0.5 /%Model size /MB
      162×52.76.16
      162×52.66.14
      16252.56.17
      85×52.86.16
      85×52.46.14
      8552.56.17
    • Table 4. Comparison results of adding different MMSA on different parts tested in TinyPerson dataset

      View table

      Table 4. Comparison results of adding different MMSA on different parts tested in TinyPerson dataset

      Number of headSize of local pooling regionBackboneNeckmAP@0.5 /%Model size /MB
      162×15.56.18
      162×14.96.16
      16216.06.19
      85×16.06.18
      85×15.96.16
      8516.16.19
    • Table 5. mAP@0.5 of using GAP and LMP in MMSA

      View table

      Table 5. mAP@0.5 of using GAP and LMP in MMSA

      AlgorithmCityPersonsCrowdHumanTT100KBDD100KTinyPerson
      YOLOv8n61.369.274.651.814.3
      MMSA-GAP61.269.675.252.515.6
      MMSA-LMP62.270.176.952.816.0
    • Table 6. mAP@0.5 of different models on various datasets

      View table

      Table 6. mAP@0.5 of different models on various datasets

      AlgorithmCityPersonsCrowdHumanTT100KBDD100KTinyPerson
      YOLOv5n58.065.255.147.612.5
      YOLOv8n61.369.274.651.814.3
      YOLOv10n58.768.772.750.613.7
      YOLOv8n+MMSA62.270.176.952.816.0
    • Table 7. mAP@0.5 of different datasets for incorporating various attention mechanisms

      View table

      Table 7. mAP@0.5 of different datasets for incorporating various attention mechanisms

      AlgorithmCityPersonsCrowdHumanTT100KBDD100KTinyPerson
      YOLOv8n61.369.274.651.814.3
      YOLOv8n+CBAM59.668.273.649.815.1
      YOLOv8n+SENet59.768.471.850.214.8
      YOLOv8n+CA59.768.773.649.715.2
      YOLOv8n+MMSA62.270.176.952.816.0
    • Table 8. Comparison of model size and detection speed before and after adding MMSA

      View table

      Table 8. Comparison of model size and detection speed before and after adding MMSA

      ModelFPS /(frame·s-1Memory /MBGFLOPS
      YOLOv8n1845.978.1
      YOLOv8n+MMSA1456.188.1
    Tools

    Get Citation

    Copy Citation Text

    Qinghua Su, Jianhong Mu, Wenhui Liang, Xiyu Wang, Juntao Li. Multi-Head Mixed Self-Attention Mechanism for Object Detection[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0637006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Jun. 19, 2024

    Accepted: Aug. 1, 2024

    Published Online: Mar. 6, 2025

    The Author Email:

    DOI:10.3788/LOP241509

    CSTR:32186.14.LOP241509

    Topics