Acta Optica Sinica, Volume. 42, Issue 17, 1714003(2022)

Research Progress in Low-Cost Tunable Semiconductor Lasers

Jiasheng Zhao1, Yimin Xia2, Qiaoli Li1, Qi Chen2, Zhongwen Wang2, Jianjun Meng2, and Jianjun He1,2、*
Author Affiliations
  • 1Lightip Technologies Co., Ltd., Hangzhou 310058, Zhejiang, China
  • 2State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310012, Zhejiang, China
  • show less
    References(64)

    [1] Hall R N, Fenner G E, Kingsley J D et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 9, 366-368(1962).

    [2] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 113, 1151-1158(1966).

    [3] Dupuis R. An introduction to the development of the semiconductor laser[J]. IEEE Journal of Quantum Electronics, 23, 651-657(1987).

    [4] Hawthorn C J, Weber K P, Scholten R E. Littrow configuration tunable external cavity diode laser with fixed direction output beam[J]. Review of Scientific Instruments, 72, 4477-4479(2001).

    [5] van Nguyen D, Cadatal-Raduban M, van Pham D et al. Tunable dual wavelength and narrow linewidth laser using a single solid-state gain medium in a double Littman resonator[J]. Optics Communications, 496, 127131(2021).

    [6] Coldren L A, Fish G A, Akulova Y et al. Tunable semiconductor lasers: a tutorial[J]. Journal of Lightwave Technology, 22, 193-202(2004).

    [7] Berger J D, Zhang Y W, Grade J D et al. Widely tunable external cavity diode laser using a MEMS electrostatic rotary actuator[C], 198-199(2001).

    [8] Finot M, McDonald M, Bettman B et al. Thermally tuned external cavity laser with micromachined silicon etalons: design, process and reliability[C], 818-823(2004).

    [9] de Merlier J, Mizutani K, Sudo S et al. Full C-band external cavity wavelength tunable laser using a liquid-Crystal-based tunable mirror[J]. IEEE Photonics Technology Letters, 17, 681-683(2005).

    [10] Mizutani K, de Merlier J, Sudo S et al. Liquid crystal mirror-based wavelength-tunable laser module with asynchronous mode cavity[J]. IEEE Photonics Technology Letters, 18, 1299-1301(2006).

    [12] Komljenovic T, Srinivasan S, Norberg E et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 214-222(2015).

    [13] Tang R, Kita T, Yamada H. Narrow-spectral-linewidth silicon photonic wavelength-tunable laser with highly asymmetric Mach-Zehnder interferometer[J]. Optics Letters, 40, 1504-1507(2015).

    [14] Verdier A, de Valicourt G, Brenot R et al. Ultrawideband wavelength-tunable hybrid external-cavity lasers[J]. Journal of Lightwave Technology, 36, 37-43(2018).

    [15] Yamazaki H, Ishizaka M, Takahashi S et al. Widely tunable laser consisting of a silica waveguide double ring resonator connected directly to a semiconductor optical amplifier[C](2004).

    [16] Yamazaki H, Takahashi M, Suzuki K et al. A widely tunable laser using silica-waveguide ring resonators[J]. Proceedings of SPIE, 6014, 50-58(2005).

    [17] Deki Y, Hatanaka T, Takahashi M et al. Wide-wavelength tunable lasers with 100 GHz FSR ring resonators[J]. Electronics Letters, 43, 225-226(2007).

    [18] Guo Y Y, Li X H, Xu W H et al. A hybrid-integrated external cavity laser with ultra-wide wavelength tuning range and high side-mode suppression[C](2022).

    [19] Guo Y Y, Zhou L J, Zhou G Q et al. Hybrid external cavity laser with a 160-nm tuning range[C](2020).

    [20] Pezeshki B, Vail E, Kubicky J et al. 20-mW widely tunable laser module using DFB array and MEMS selection[J]. IEEE Photonics Technology Letters, 14, 1457-1459(2002).

    [21] Wilde J P, Yoffe G W, Kahn J M. Frequency noise characterization of a widely tunable narrow-linewidth DFB laser array source[C], JWA33(2009).

    [22] Hatakeyama H, Naniwae K, Kudo K et al. Wavelength-selectable microarray light sources for S-, C-, and L-bands WDM systems[J]. IEEE Photonics Technology Letters, 15, 903-905(2003).

    [23] Ishii H, Kasaya K, Oohashi H. Spectral linewidth reduction in widely wavelength tunable DFB laser array[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 514-520(2009).

    [24] Lu J, Liu S P, Tang Q et al. Multi-wavelength distributed feedback laser array with very high wavelength-spacing precision[J]. Optics Letters, 40, 5136-5139(2015).

    [25] Li J S, Tang S, Wang J et al. An eight-wavelength BH DFB laser array with equivalent phase shifts for WDM systems[J]. IEEE Photonics Technology Letters, 26, 1593-1596(2014).

    [26] Grabherr M, Jager R, Michalzik R et al. Efficient single-mode oxide-confined GaAs VCSEL′s emitting in the 850-nm wavelength regime[J]. IEEE Photonics Technology Letters, 9, 1304-1306(1997).

    [27] Weigl B, Grabherr M, Michalzik R et al. High-power single-mode selectively oxidized vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 8, 971-973(1996).

    [28] Grabherr M, Wiedenmann D, Jaeger R et al. Fabrication and performance of tunable single-mode VCSELs emitting in the 750- to 1000-nm range[J]. Proceedings of SPIE, 5737, 120-128(2005).

    [29] Knopp K J, Vakhshoori D, Wang P D et al. High power MEMs tunable vertical cavity surface emitting laser[C](2001).

    [30] Chang-Hasnain C J. Tunable VCSEL[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 978-987(2000).

    [31] Huang M C Y, Cheng K B, Zhou Y et al. Monolithic integrated piezoelectric MEMS-tunable VCSEL[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 374-380(2007).

    [32] Mason B, Fish G A, DenBaars S P et al. Ridge waveguide sampled grating DBR lasers with 22-nm quasi-continuous tuning range[J]. IEEE Photonics Technology Letters, 10, 1211-1213(1998).

    [33] Jayaraman V, Chuang Z M, Coldren L A. Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings[J]. IEEE Journal of Quantum Electronics, 29, 1824-1834(1993).

    [34] Ward A J, Robbins D J, Busico G et al. Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 149-156(2005).

    [35] Ishii H, Tohmori Y, Yoshikuni Y et al. Multiple-phase shift super structure grating DBR lasers for broad wavelength tuning[J]. IEEE Photonics Technology Letters, 5, 613-615(1993).

    [36] Tohmori Y, Yoshikuni Y, Ishii H et al. Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers[J]. IEEE Journal of Quantum Electronics, 29, 1817-1823(1993).

    [37] Oberg M, Rigole P J, Nilsson S et al. Complete single mode wavelength coverage over 40 nm with a super structure grating DBR laser[J]. Journal of Lightwave Technology, 13, 1892-1898(1995).

    [38] Wesstrom J O, Hammerfeldt S, Buus J et al. Design of a widely tunable modulated grating Y-branch laser using the additive Vernier effect for improved super-mode selection[C], 99-100(2002).

    [39] Wesstrom J O, Sarlet G, Hammerfeldt S et al. State-of-the-art performance of widely tunable modulated grating Y-branch lasers[C], 389(2004).

    [40] Bustillos-Barcaya M C, Rinalde G F, Bulus-Rossini L A et al. Y-branch tunable laser design: modeling, control and experimental validation[J]. Optics & Laser Technology, 140, 107040(2021).

    [41] Bustillos Barcaya M C, Rinalde G F. Embedded tunable laser control for WDM optical communications systems[J]. IEEE Latin America Transactions, 18, 241-248(2020).

    [42] Kobayashi K, Mito I. Single frequency and tunable laser diodes[J]. Journal of Lightwave Technology, 6, 1623-1633(1988).

    [43] Coldren L, Corzine S. Continuously-tunable single-frequency semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 23, 903-908(1987).

    [44] Zhou D B, Liang S, He Y M et al. Two 10 Gb/s directly modulated DBR lasers covering 20 nm wavelength range[J]. Optics Communications, 475, 126236(2020).

    [45] Liu Y, Chen D, Yu Y L. Improving modulation bandwidth of tunable three sections distributed Bragg reflector lasers by using asymmetric nonlinear gain: design and simulation[J]. Optics Communications, 479, 126439(2021).

    [46] Liu Y, Chen D, Duan F et al. Enhanced direct modulation bandwidth in a tunable DBR laser with an equivalent phase shift grating[J]. Optics & Laser Technology, 149, 107830(2022).

    [47] Bogaerts W, de Heyn P, van Vaerenbergh T et al. Silicon microring resonators[J]. Laser & Photonics Reviews, 6, 47-73(2012).

    [48] Segawa T, Matsuo S, Kakitsuka T et al. Full C-band tuning operation of semiconductor double-ring resonator-coupled laser with low tuning current[J]. IEEE Photonics Technology Letters, 19, 1322-1324(2007).

    [49] Coldren L A, Furuya K, Miller B I et al. Etched mirror and groove-coupled GaInAsP/InP laser devices for integrated optics[J]. IEEE Journal of Quantum Electronics, 18, 1679-1688(1982).

    [50] Coldren L A, Miller B I, Iga K et al. Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching[J]. Applied Physics Letters, 38, 315-317(1981).

    [51] Byrne D C, Engelstaedter J P, Guo W H et al. Discretely tunable semiconductor lasers suitable for photonic integration[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 482-487(2009).

    [52] Wang Y, Yang Y G, He J J. Single-electrode controlled four-section coupled-cavity tunable laser[J]. IEEE Photonics Technology Letters, 25, 1340-1343(2013).

    [53] Su Y M, Bi Y, Wang P F et al. Emitting direction tunable slotted laser array for Lidar applications[J]. Optics Communications, 462, 125277(2020).

    [54] Zhou Y L, Zhang X, Zhang J W et al. A novel method for widely tunable semiconductor lasers: temperature-induced gain spectrum shift between adjacent grating reflection peaks[J]. Journal of Luminescence, 248, 118998(2022).

    [55] He J J, Liu D K. Wavelength switchable semiconductor laser using half-wave V-coupled cavities[J]. Optics Express, 16, 3896-3911(2008).

    [56] Jin J L, Wang L, Yu T T et al. Widely wavelength switchable V-coupled-cavity semiconductor laser with ∼40 dB side-mode suppression ratio[J]. Optics Letters, 36, 4230-4232(2011).

    [57] Zhang S, Meng J J, Guo S L et al. Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning[J]. Optics Express, 21, 13564-13571(2013).

    [58] D’Agostino D, Lenstra D, Ambrosius H P M M et al. Coupled cavity laser based on anti-resonant imaging via multimode interference[J]. Optics Letters, 40, 653-656(2015).

    [59] Wan Y T, Zhang S, Norman J C et al. directly modulated single-mode tunable quantum dot lasers at 1.3 µm[J]. Laser & Photonics Reviews, 14, 1900348(2020).

    [60] Cheung S. High-speed, directly-modulated widely tunable 1310 nm coupled cavity laser via multimode interference[J]. Journal of Lightwave Technology, 37, 2133-2139(2019).

    [61] Yang H T, Yang R Q, Gong J L et al. Mid-infrared widely tunable single-mode interband cascade lasers based on V-coupled cavities[J]. Optics Letters, 45, 2700-2703(2020).

    [62] Chen Q, Wang Z W, Zhao J S et al. Improved half-wave coupled V-cavity laser using aggregating-image multimode interference coupler[J]. IEEE Photonics Journal, 14, 6638307(2022).

    [64] Meng J J, Xiong X H, Xing H B et al. Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules[J]. IEEE Photonics Technology Letters, 29, 1035-1038(2017).

    [65] Zhang S, Xia Y M, Meng J J et al. Widely tunable electro-absorption modulated V-cavity laser[J]. IEEE Photonics Journal, 11, 2950608(2019).

    CLP Journals

    [1] WANG Jun, GE Qing, LIU Shuaicheng, MA Bojie, LIU Zhuoliang, ZHAI Hao, LIN Feng, JIANG Chen, LIU Hao, LIU Kai, YANG Yisu, WANG Qi, HUANG Yongqing, REN Xiaomin. Investigation of Epitaxial III-V Quantum Well and Quantum Dot Lasers on Silicon for Monolithic Integration[J]. Journal of Synthetic Crystals, 2023, 52(5): 766

    Tools

    Get Citation

    Copy Citation Text

    Jiasheng Zhao, Yimin Xia, Qiaoli Li, Qi Chen, Zhongwen Wang, Jianjun Meng, Jianjun He. Research Progress in Low-Cost Tunable Semiconductor Lasers[J]. Acta Optica Sinica, 2022, 42(17): 1714003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Jul. 4, 2022

    Accepted: Jul. 28, 2022

    Published Online: Sep. 16, 2022

    The Author Email: He Jianjun (jjhe@zju.edu.cn)

    DOI:10.3788/AOS202242.1714003

    Topics