Acta Optica Sinica, Volume. 42, Issue 17, 1714003(2022)
Research Progress in Low-Cost Tunable Semiconductor Lasers
Fig. 3. Intel's tunable external cavity laser employing thermally tuned etalons[8]
Fig. 4. NEC's external cavity tunable lasers based on etalon and liquid crystal mirror[9]. (a) Structure schematic; (b) tuning schematic
Fig. 7. External cavity tunable lasers developed by NEC with three microrings [17]. (a) Structure diagram; (b) tuning spectrum diagram
Fig. 11. Tuning spectra of 6 pieces of 8-channel DFB array lasers produced by NEC[22]
Fig. 15. DS-DBR lasers[34]. (a) Chip; (b) reflection spectra from forward and backward grating
Fig. 18. NTT's monolithic integrated microring tunable lasers[48]. (a) Chip; (b) tuning spectrum
Fig. 22. Schematic of symmetrical expansion of the tunable V-cavity laser based on reflective 2×2 coupler[55]
Fig. 23. Change of output light field with input phase difference[55]. (a) Coupling phase difference is 90°; (b) coupling phase difference is 180°
Fig. 24. Half-wave coupled V-cavity tunable laser[56]. (a) Chip structure; (b) tuning spectra
Fig. 25. Tunable V-cavity laser[57]. (a) Tuning spectra; (b) tuning curves at four different temperatures
Fig. 26. Schematic and typical output spectrum of COBRA's tunable V-cavity laser[58]
Fig. 27. O-band tunable lasers[59]. (a) Tuning spectra; (b) direct modulation 2 Gbit/s eye diagram; (c) 6 Gbit/s eye diagram;(d) 4 Gbit/s eye diagram; (e) 8 Gbit/s eye diagram
Fig. 28. HP's O-band tunable V-cavity laser[60]. (a) Tuning spectra; (b) 3 dB bandwidth
Fig. 29. Mid-infrared tunable V-cavity laser[61]. (a) Typical spectrum; (b) tuning curves at different currents and temperatures;(c) 47-channel tuning spectra in the range of 53 nm
Fig. 31. 16×16 MMI coupler V-cavity laser[62]. (a) Tuning spectra under single-temperature and single-electrode; (b) single-electrode tuning spectra combining two temperatures
Fig. 32. Tunable V-cavity laser with monolithic integrated M-Z modulator[63]. (a) Chip; (b) 64-channel tuning spectra; (c) electro-optical response curve of integrated M-Z modulator
Fig. 33. 10 Gbit/s optical module[65]. (a) 41 nm broadband tuning spectra; (b) typical eye diagram of direct modulation; (c) typical eye diagram of electro-absorption
Fig. 34. Bit error rate curves of tunable V-cavity lasers at different wavelengths and distances[65]. (a) Bit error rate curves at wavelength of 1559.79 nm; (b) bit error rate curves at different wavelengths
Fig. 35. 25 Gbit/s tunable EML lasers[65]. (a) Chip; (b) device; (c) module; (d) 32-channel spectra; (e) typical eye diagram
Fig. 36. Frequency stability and power stability of tunable V-cavity laser within 5000 h. (a) Frequency stability; (b) power stability
Fig. 39. Distributed optical transceiver switching system. (a) Schematic; (b) demonstration system
|
Get Citation
Copy Citation Text
Jiasheng Zhao, Yimin Xia, Qiaoli Li, Qi Chen, Zhongwen Wang, Jianjun Meng, Jianjun He. Research Progress in Low-Cost Tunable Semiconductor Lasers[J]. Acta Optica Sinica, 2022, 42(17): 1714003
Category: Lasers and Laser Optics
Received: Jul. 4, 2022
Accepted: Jul. 28, 2022
Published Online: Sep. 16, 2022
The Author Email: He Jianjun (jjhe@zju.edu.cn)