Photonics Research, Volume. 9, Issue 5, 781(2021)
Environment-friendly antisolvent tert-amyl alcohol modified hybrid perovskite photodetector with high responsivity
[1] K. J. Baeg, M. Binda, D. Natali, M. Caironi, Y. Y. Noh. Organic light detectors: Photodiodes and phototransistors. Adv. Mater., 25, 4267-4295(2013).
[2] H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang. Nanostructured photodetectors: from ultraviolet to terahertz. Adv. Mater., 28, 403-433(2016).
[3] P. C. Eng, S. Song, B. Ping. State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength. Nanophotonics, 4, 277-302(2015).
[4] F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).
[5] J. Li, L. Niu, Z. Zheng, F. Yan. Photosensitive graphene transistors. Adv. Mater., 26, 5239-5273(2014).
[6] C. L. Tan, H. Mohseni. Emerging technologies for high performance infrared detectors. Nanophotonics, 7, 169-197(2018).
[7] L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, Y. Yang. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun., 5, 5404(2014).
[8] H. J. Haugan, S. Elhamri, F. Szmulowicz, B. Ullrich, G. J. Brown, W. C. Mitchel. Study of residual background carriers in midinfrared InAs/GaSb superlattices for uncooled detector operation. Appl. Phys. Lett., 92, 071102(2008).
[9] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, A. Castellanos-Gomez. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev., 44, 3691-3718(2015).
[10] A. Rogalski, J. Antoszewski, L. Faraone. Third-generation infrared photodetector arrays. J. Appl. Phys., 105, 091101(2009).
[11] F. P. García de Arquer, A. Armin, P. Meredith, E. H. Sargent. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater., 2, 16100(2017).
[12] C. Xie, C. K. Liu, H. L. Loi, F. Yan. Perovskite-based phototransistors and hybrid photodetectors. Adv. Funct. Mater., 30, 1903907(2019).
[13] H. Wang, D. H. Kim. Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev., 46, 5204-5236(2017).
[14] Y. Yao, Y. Liang, V. Shrotriya, S. Xiao, L. Yu, Y. Yang. Plastic near-infrared photodetectors utilizing low band gap polymer. Adv. Mater., 19, 3979-3983(2007).
[15] X. Zhou, D. Yang, D. Ma. Extremely low dark current, high responsivity, all-polymer photodetectors with spectral response from 300 nm to 1000 nm. Adv. Opt. Mater., 3, 1570-1576(2015).
[16] H. Y. Chen, M. K. Lo, G. Yang, H. G. Monbouquette, Y. Yang. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nat. Nanotechnol., 3, 543-547(2008).
[17] F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol., 7, 798-802(2012).
[18] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E. H. Sargent. Ultrasensitive solution-cast quantum dot photodetectors. Nature, 442, 180-183(2006).
[19] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, A. J. Heeger. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 325, 1665-1667(2009).
[20] V. Sukhovatkin, S. Hinds, L. Brzozowski, E. H. Sargent. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science, 324, 1542-1544(2009).
[21] D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy, 1, 16142(2016).
[22] Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen, Y. Lin, H. Wei, Z. J. Yu, Z. Holman, J. Huang. Simplified interconnection structure based on C60/SnO2-
[23] D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, C. R. Grice, A. J. Cimaroli, L. Guan, R. J. Ellingson, K. Zhu, X. Zhao, R.-G. Xiong, Y. Yan. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy, 2, 17018(2017).
[24] N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, M. Gratzel. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 358, 768-771(2017).
[25] T. H. Han, J. W. Lee, Y. J. Choi, C. Choi, S. Tan, S. J. Lee, Y. Zhao, Y. Huang, D. Kim, Y. Yang. Surface-2D/bulk-3D heterophased perovskite nanograins for long-term-stable light-emitting diodes. Adv. Mater., 32, 1905674(2020).
[26] Y. Shang, Y. Liao, Q. Wei, Z. Wang, B. Xiang, Y. Ke, W. Liu, Z. Ning. Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure. Sci. Adv., 5, eaaw8072(2019).
[27] P. Liu, X. He, J. Ren, Q. Liao, J. Yao, H. Fu. Organic-inorganic hybrid perovskite nanowire laser arrays. ACS Nano, 11, 5766-5773(2017).
[28] X. Fu, S. Jiao, Y. Jiang, L. Li, X. Wang, C. Zhu, C. Ma, H. Zhao, Z. Xu, Y. Liu, W. Huang, W. Zheng, P. Fan, F. Jiang, D. Zhang, X. Zhu, X. Wang, A. Pan. Large-scale growth of ultrathin low-dimensional perovskite nanosheets for high-detectivity photodetectors. ACS Appl. Mater. Interfaces, 12, 2884-2891(2020).
[29] C. K. Liu, Q. Tai, N. Wang, G. Tang, H. L. Loi, F. Yan. Sn-based perovskite for highly sensitive photodetectors. Adv. Sci., 6, 1900751(2019).
[30] C. Zuo, H. J. Bolink, H. Han, J. Huang, D. Cahen, L. Ding. Advances in perovskite solar cells. Adv. Sci., 3, 1500324(2016).
[31] B. Saparov, D. B. Mitzi. Organic-inorganic perovskites: structural versatility for functional materials design. Chem. Rev., 116, 4558-4596(2016).
[32] Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang. Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 10, 355-396(2015).
[33] N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, N. G. Park. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc., 137, 8696-8699(2015).
[34] Y. Yun, F. Wang, H. Huang, Y. Fang, S. Liu, W. Huang, Z. Cheng, Y. Liu, Y. Cao, M. Gao, L. Zhu, L. Wang, T. Qin, W. Huang. A nontoxic bifunctional (anti)solvent as digestive-ripening agent for high-performance perovskite solar cells. Adv. Mater., 32, 1907123(2020).
[35] L. Wang, X. Wang, L.-L. Deng, S. Leng, X. Guo, C.-H. Tan, W. C. H. Choy, C.-C. Chen. The mechanism of universal green antisolvents for intermediate phase controlled high-efficiency formamidinium-based perovskite solar cells. Mater. Horiz., 7, 934-942(2020).
[36] H. Li, Y. Xia, C. Wang, G. Wang, Y. Chen, L. Guo, D. Luo, S. Wen. High-efficiency and stable perovskite solar cells prepared using chlorobenzene/acetonitrile antisolvent. ACS Appl. Mater. Interfaces, 11, 34989-34996(2019).
[37] F. Yang, G. Kapil, P. Zhang, Z. Hu, M. A. Kamarudin, T. Ma, S. Hayase. Dependence of acetate-based antisolvents for high humidity fabrication of CH3NH3PbI3 perovskite devices in ambient atmosphere. ACS Appl. Mater. Interfaces, 10, 16482-16489(2018).
[38] N. Sakai, S. Pathak, H.-W. Chen, A. A. Haghighirad, S. D. Stranks, T. Miyasaka, H. J. Snaith. The mechanism of toluene-assisted crystallization of organic–inorganic perovskites for highly efficient solar cells. J. Mater. Chem. A, 4, 4464-4471(2016).
[39] X. Xu, Z. Li, L. Zhu, H. Zheng, G. Liu, T. Hayat, A. Alsaedi, X. Zhang, Y. Huang, X. Pan. Large-grained formamidinium-based films via a 2D–3D conversion mechanism for high-performance perovskite solar cells without anti-solvent. J. Mater. Chem. A, 7, 1341-1348(2019).
[40] M. Yin, F. Xie, H. Chen, X. Yang, F. Ye, E. Bi, Y. Wu, M. Cai, L. Han. Annealing-free perovskite films by instant crystallization for efficient solar cells. J. Mater. Chem. A, 4, 8548-8553(2016).
[41] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, T. Wu. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun., 6, 8238(2015).
[42] C. Liu, H. Peng, K. Wang, C. Wei, Z. Wang, X. Gong. PbS quantum dots-induced trap-assisted charge injection in perovskite photodetectors. Nano Energy, 30, 27-35(2016).
[43] C. Liu, K. Wang, C. Yi, X. Shi, P. Du, A. W. Smith, A. Karim, X. Gong. Ultrasensitive solution-processed perovskite hybrid photodetectors. J. Mater. Chem. C, 3, 6600-6606(2015).
[44] B. R. Sutherland, A. K. Johnston, A. H. Ip, J. Xu, V. Adinolfi, P. Kanjanaboos, E. H. Sargent. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photon., 2, 1117-1123(2015).
[45] C. Bao, W. Zhu, J. Yang, F. Li, S. Gu, Y. Wang, T. Yu, J. Zhu, Y. Zhou, Z. Zou. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Appl. Mater. Interfaces, 8, 23868-23875(2016).
[46] X. Zhang, C. Liu, G. Ren, S. Li, C. Bi, Q. Hao, H. Liu. High-switching-ratio photodetectors based on perovskite CH3NH3PbI3 nanowires. Nanomaterials, 8, 318(2018).
[47] H. Tao, H. Wang, Y. Bai, H. Zhao, Q. Fu, Z. Ma, H. Long. Efficient photodiode-type photodetectors with perovskite thin films derived from an MAPbI3 single-crystal precursor. J. Mater. Chem. C, 8, 6228-6235(2020).
[48] F. Yan, Z. Wei, X. Wei, Q. Lv, W. Zhu, K. Wang. Toward high-performance photodetectors based on 2D materials: strategy on methods. Small Methods, 2, 1700349(2018).
[49] Z.-Y. Peng, J.-L. Xu, J.-Y. Zhang, X. Gao, S.-D. Wang. Solution-processed high-performance hybrid photodetectors enhanced by perovskite/MoS2 bulk heterojunction. Adv. Mater. Interfaces, 5, 1800505(2018).
[50] C. Xie, C. Mak, X. Tao, F. Yan. Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater., 27, 1603886(2017).
Get Citation
Copy Citation Text
Tengteng Li, Qingyan Li, Xin Tang, Zhiliang Chen, Yifan Li, Hongliang Zhao, Silei Wang, Xin Ding, Yating Zhang, Jianquan Yao, "Environment-friendly antisolvent tert-amyl alcohol modified hybrid perovskite photodetector with high responsivity," Photonics Res. 9, 781 (2021)
Category: Optoelectronics
Received: Dec. 2, 2020
Accepted: Jan. 20, 2021
Published Online: Apr. 26, 2021
The Author Email: Yating Zhang (yating@tju.edu.cn)