Chinese Journal of Lasers, Volume. 48, Issue 19, 1901002(2021)

Advances on Mid-Infrared Germanium Integrated Photonics

Rongxiang Guo1,2, Haoran Gao1,2, Zhenzhou Cheng1,2、*, and Tiegen Liu1,2
Author Affiliations
  • 1School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin 300072, China
  • show less
    References(130)

    [1] Haldar S K. Photogeology, remote sensing and geographic information system in mineral exploration[M]. //Mineral exploration, 95-115(2013).

    [2] Jalali B. Nonlinear optics in the mid-infrared[J]. Nature Photonics, 4, 506-508(2010).

    [3] Ottonello-Briano F, Errando-Herranz C, Rödjegård H et al. Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide[J]. Optics Letters, 45, 109-112(2020).

    [4] Dehzangi A, Li J K, Razeghi M. Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice[J]. Light: Science & Applications, 10, 17(2021).

    [5] Wu J W, Yue G C, Chen W C et al. On-chip optical gas sensors based on group-IV materials[J]. ACS Photonics, 7, 2923-2940(2020).

    [6] Wei C, Shi H X, Luo H Y et al. Research progress of pulsed mid-infrared fiber lasers using two-dimensional materials[J]. Chinese Journal of Lasers, 44, 0703009(2017).

    [7] Hu M L, Cai Y. Research progress on mid-infrared ultrafast fiber laser[J]. Chinese Journal of Lasers, 47, 0500009(2020).

    [8] Miller S E. Integrated optics: an introduction[J]. The Bell System Technical Journal, 48, 2059-2069(1969).

    [10] Hiramatsu N, Kusa F, Imasaka K et al. Propagation length of mid-infrared surface plasmon polaritons on gold: Impact of morphology change by thermal annealing[J]. Journal of Applied Physics, 120, 173103(2016).

    [12] Gai X, Choi D Y, Madden S et al. Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide[J]. Optics Letters, 37, 3870-3872(2012).

    [13] Fedeli J M, Nicoletti S. Mid-infrared (mid-IR) silicon-based photonics[J]. Proceedings of the IEEE, 106, 2302-2312(2018).

    [14] Soref R. Mid-infrared photonics in silicon and germanium[J]. Nature Photonics, 4, 495-497(2010).

    [15] Mashanovich G Z, Milošević M M, Nedeljkovic M et al. Low loss silicon waveguides for the mid-infrared[J]. Optics Express, 19, 7112-7119(2011).

    [16] Steinmeyer G, Skibina J S. Entering the mid-infrared[J]. Nature Photonics, 8, 814-815(2014).

    [17] Zou Y, Chakravarty S, Chung C J et al. Mid-infrared silicon photonic waveguides and devices[J]. Photonics Research, 6, 254-276(2018).

    [18] Hu T, Dong B W, Luo X S et al. Silicon photonic platforms for mid-infrared applications[J]. Photonics Research, 5, 417-430(2017).

    [19] Cheng Z Z, Qin C Y, Wang F Q et al. Progress on mid-IR graphene photonics and biochemical applications[J]. Frontiers of Optoelectronics, 9, 259-269(2016).

    [20] Cheng Z Z, Chen X, Wong C Y et al. Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator[J]. IEEE Photonics Journal, 4, 1510-1519(2012).

    [21] Marris-Morini D, Vakarin V, Ramirez J M et al. Germanium-based integrated photonics from near- to mid-infrared applications[J]. Nanophotonics, 7, 1781-1793(2018).

    [22] Liu T G, Chen W C, Cheng Z Z. Mid-infrared germanium photonics[M]. //Mid-infrared germanium photonics(2020).

    [23] Liu M, Yin X B, Ulin-Avila E et al. A graphene-based broadband optical modulator[J]. Nature, 474, 64-67(2011).

    [27] Yue G, Xing Z, Hu H et al. Graphene-based dual-mode modulators[J]. Optics Express, 28, 18456-18471(2020).

    [28] Phatak A, Cheng Z, Qin C et al. Design of electro-optic modulators based on graphene-on-silicon slot waveguides[J]. Optics Letters, 41, 2501-2504(2016).

    [29] Wang J, Cheng Z, Chen Z et al. High-responsivity graphene-on-silicon slot waveguide photodetectors[J]. Nanoscale, 8, 13206-13211(2016).

    [30] Wang J Q, Cheng Z Z, Chen Z F et al. Graphene photodetector integrated on silicon nitride waveguide[J]. Journal of Applied Physics, 117, 144504(2015).

    [31] Lei W, Antoszewski J, Faraone L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors[J]. Applied Physics Reviews, 2, 041303(2015).

    [32] Gunapala S D, Bandara S V, Liu J K et al. Quantum well infrared photodetector technology and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 154-165(2014).

    [33] Rogalski A, Martyniuk P, Kopytko M. Type-II superlattice photodetectors versus HgCdTe photodiodes[J]. Progress in Quantum Electronics, 68, 100228(2019).

    [34] Cheng Z Z, Tsang H K, Wang X M et al. In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 43-48(2014).

    [35] Xing Z K, Li C, Han Y D et al. Design of on-chip polarizers based on graphene-on-silicon nanowires[J]. Applied Physics Express, 12, 072001(2019).

    [36] Xing Z K, Li C, Han Y D et al. Waveguide-integrated graphene spatial mode filters for on-chip mode-division multiplexing[J]. Optics Express, 27, 19188-19195(2019).

    [37] Wang J Q, Cheng Z Z, Shu C et al. Optical absorption in graphene-on-silicon nitride microring resonators[J]. IEEE Photonics Technology Letters, 27, 1765-1767(2015).

    [38] Hon N K, Soref R, Jalali B. The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared[J]. Journal of Applied Physics, 110, 011301(2011).

    [41] Werle P, Maurer K, Kormann R et al. Spectroscopic gas analyzers based on indium-phosphide, antimonide and lead-salt diode-lasers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58, 2361-2372(2002).

    [43] Soref R A, Emelett S J, Buchwald W R. Silicon waveguided components for the long-wave infrared region[J]. Journal of Optics A: Pure and Applied Optics, 8, 840-848(2006).

    [44] Yang P Y, Mashanovich G Z, Gomez-Morilla I et al. Freestanding waveguides in silicon[J]. Applied Physics Letters, 90, 241109(2007).

    [45] Mashanovich G Z, Milosevic M, Matavulj P et al. Silicon photonic waveguides for different wavelength regions[J]. Semiconductor Science and Technology, 23, 064002(2008).

    [46] Spott A, Liu Y, Baehr-Jones T et al. Silicon waveguides and ring resonators at 5.5 μm[J]. Applied Physics Letters, 97, 213501(2010).

    [47] Li F X, Jackson S D, Grillet C et al. Low propagation loss silicon-on-sapphire waveguides for the mid-infrared[J]. Optics Express, 19, 15212-15220(2011).

    [48] Cheng Z Z, Chen X, Wong C Y et al. Mid-infrared grating couplers for silicon-on-sapphire waveguides[J]. IEEE Photonics Journal, 4, 104-113(2012).

    [49] Lin H T, Luo Z Q, Gu T et al. Mid-infrared integrated photonics on silicon: a perspective[J]. Nanophotonics, 7, 393-420(2017).

    [50] Zhang L, Agarwal A M, Kimerling L C et al. Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared[J]. Nanophotonics, 3, 247-268(2014).

    [51] Chang Y C, Paeder V, Hvozdara L et al. Low-loss germanium strip waveguides on silicon for the mid-infrared[J]. Optics Letters, 37, 2883-2885(2012).

    [52] Younis U, Vanga S K, Lim A E J et al. Germanium-on-SOI waveguides for mid-infrared wavelengths[J]. Optics Express, 24, 11987-11993(2016).

    [53] Li W, Anantha P, Bao S Y et al. Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics[J]. Applied Physics Letters, 109, 241101(2016).

    [54] Kang J, Takenaka M, Takagi S. Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits[J]. Optics Express, 24, 11855-11864(2016).

    [56] Kang J, Cheng Z Z, Zhou W et al. Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides[J]. Optics Letters, 42, 2094-2097(2017).

    [57] Nedeljkovic M, Penadés J S, Mitchell C J et al. Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers[J]. IEEE Photonics Technology Letters, 27, 1040-1043(2015).

    [58] Younis U, Lim A E J, Lo P G Q et al. Propagation loss improvement in Ge-on-SOI mid-infrared waveguides using rapid thermal annealing[J]. IEEE Photonics Technology Letters, 28, 2447-2450(2016).

    [59] Nedeljkovic M, Penades J S, Mittal V et al. Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 μm[J]. Optics Express, 25, 27431-27441(2017).

    [60] Gallacher K, Millar R W, Griškevičiūte U et al. Low loss Ge-on-Si waveguides operating in the 8-14 μm atmospheric transmission window[J]. Optics Express, 26, 25667-25675(2018).

    [61] Osman A, Nedeljkovic M, Soler Penades J et al. Suspended low-loss germanium waveguides for the longwave-infrared[J]. Optics Letters, 43, 5997-6000(2018).

    [63] Kozak D A, Stievater T H, Mahon R et al. Germanium-on-silicon waveguides at wavelengths from 6.85 to 11.25 microns[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-4(2018).

    [64] Tian M, Qu M N, Wu L Y et al. Progress on asymmetrical grating couplers for vertical coupling[J]. Laser & Optoelectronics Progress, 58, 0500004(2021).

    [65] Alonso-Ramos C, Nedeljkovic M, Benedikovic D et al. Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation[J]. Optics Letters, 41, 4324-4327(2016).

    [66] Radosavljevic S, Kuyken B, Roelkens G. Efficient 5.2 μm wavelength fiber-to-chip grating couplers for the Ge-on-Si and Ge-on-SOI mid-infrared waveguide platform[J]. Optics Express, 25, 19034-19042(2017).

    [67] Kang J, Takagi S, Takenaka M. Design and characterization of Ge passive waveguide components on Ge-on-insulator wafer for mid-infrared photonics[J]. Japanese Journal of Applied Physics, 57, 042202(2018).

    [68] Manipatruni S, Preston K, Chen L et al. Ultra-low voltage, ultra-small mode volume silicon microring modulator[J]. Optics Express, 18, 18235-18242(2010).

    [69] Shen B, Chang L, Liu J et al. Integrated turnkey soliton microcombs[J]. Nature, 582, 365-369(2020).

    [70] Nedeljkovic M, Littlejohns C G, Khokhar A Z et al. Silicon-on-insulator free-carrier injection modulators for the mid-infrared[J]. Optics Letters, 44, 915-918(2019).

    [71] Griffith A G, Lau R K W, Cardenas J et al. Silicon-chip mid-infrared frequency comb generation[J]. Nature Communications, 6, 6299(2015).

    [72] Yu M J, Okawachi Y, Griffith A G et al. Silicon-chip-based mid-infrared dual-comb spectroscopy[J]. Nature Communications, 9, 1869(2018).

    [73] Troia B, Penades J S, Khokhar A Z et al. Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared[J]. Optics Letters, 41, 610-613(2016).

    [74] Radosavljevic S, Beneitez N T, Katumba A et al. Mid-infrared Vernier racetrack resonator tunable filter implemented on a germanium on SOI waveguide platform[J]. Optical Materials Express, 8, 824-835(2018).

    [75] Xiao T H, Zhao Z, Zhou W et al. Mid-infrared high-Q germanium microring resonator[J]. Optics Letters, 43, 2885-2888(2018).

    [76] Michler P, Kiraz A, Becher C et al. A quantum dot single-photon turnstile device[J]. Science, 290, 2282-2285(2000).

    [77] Painter O, Lee R K, Scherer A et al. Two-dimensional photonic band-gap defect mode laser[J]. Science, 284, 1819-1821(1999).

    [78] Takahashi Y, Inui Y, Chihara M et al. A micrometre-scale Raman silicon laser with a microwatt threshold[J]. Nature, 498, 470-474(2013).

    [79] Ngo T P, El Kurdi M, Checoury X et al. Two-dimensional photonic crystals with germanium on insulator obtained by a condensation method[J]. Applied Physics Letters, 93, 241112(2008).

    [80] Kuroki M, Kako S, Ishida S et al. Germanium photonic crystal nanobeam cavity with Q > 1, 300[C]. //CLEO: Science and Innovations 2015, May 10-15, 2015, San Jose, California, SM3G.4(2015).

    [81] Xiao T H, Zhao Z, Zhou W et al. Mid-infrared germanium photonic crystal cavity[J]. Optics Letters, 42, 2882-2885(2017).

    [82] Xiao T H, Zhao Z Q, Zhou W et al. High-Q germanium optical nanocavity[J]. Photonics Research, 6, 925-928(2018).

    [83] Malik A, Muneeb M, Shimura Y et al. Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared[J]. Applied Physics Letters, 103, 161119(2013).

    [84] Gallacher K, Millar R W, Griškevičiūtė U et al. Ultra-broadband mid-infrared Ge-on-Si waveguide polarization rotator[J]. APL Photonics, 5, 026102(2020).

    [85] Liu J F, Sun X C, Camacho-Aguilera R et al. Ge-on-Si laser operating at room temperature[J]. Optics Letters, 35, 679-681(2010).

    [86] Wirths S, Geiger R, von den Driesch N et al. Lasing in direct-bandgap GeSn alloy grown on Si[J]. Nature Photonics, 9, 88-92(2015).

    [87] Süess M J, Geiger R, Minamisawa R A et al. Analysis of enhanced light emission from highly strained germanium microbridges[J]. Nature Photonics, 7, 466-472(2013).

    [89] Gassenq A, Tardif S, Guilloy K et al. Accurate strain measurements in highly strained Ge microbridges[J]. Applied Physics Letters, 108, 241902(2016).

    [90] Ghrib A, El Kurdi M, Prost M et al. All-around SiN stressor for high and homogeneous tensile strain in germanium microdisk cavities[J]. Advanced Optical Materials, 3, 353-358(2015).

    [91] Petykiewicz J, Nam D, Sukhdeo D S et al. Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities[J]. Nano Letters, 16, 2168-2173(2016).

    [92] Bao S, Kim D, Onwukaeme C et al. Low-threshold optically pumped lasing in highly strained germanium nanowires[J]. Nature Communications, 8, 1845(2017).

    [93] Millar R W, Gallacher K, Frigerio J et al. Analysis of Ge micro-cavities with in-plane tensile strains above 2 %[J]. Optics Express, 24, 4365-4374(2016).

    [94] Armand Pilon F T, Lyasota A, Niquet Y M et al. Lasing in strained germanium microbridges[J]. Nature Communications, 10, 1-8(2019).

    [95] Fujigaki T, Takagi S, Takenaka M. High-efficiency Ge thermo-optic phase shifter on Ge-on-insulator platform[J]. Optics Express, 27, 6451-6458(2019).

    [96] Ho C P, Zhao Z Q, Li Q et al. Mid-infrared tunable Vernier filter on a germanium-on-insulator photonic platform[J]. Optics Letters, 44, 2779-2782(2019).

    [97] Ho C P, Zhao Z Q, Li Q et al. Tunable germanium-on-insulator band-stop optical filter using thermo-optic effect[J]. IEEE Photonics Journal, 12, 1-7(2020).

    [98] Li T T, Nedeljkovic M, Hattasan N et al. Ge-on-Si modulators operating at mid-infrared wavelengths up to 8 μm[J]. Photonics Research, 7, 828-836(2019).

    [99] Shen L, Healy N, Mitchell C J et al. Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides[J]. Optics Letters, 40, 268-271(2015).

    [100] Shen L, Healy N, Mitchell C J et al. Two-photon absorption and all-optical modulation in germanium-on-silicon waveguides for the mid-infrared[J]. Optics Letters, 40, 2213-2216(2015).

    [102] Cheng Z Z, Goda K. Design of waveguide-integrated graphene devices for photonic gas sensing[J]. Nanotechnology, 27, 505206(2016).

    [103] Li W, Anantha P, Lee K H et al. Spiral waveguides on germanium-on-silicon nitride platform for mid-IR sensing applications[J]. IEEE Photonics Journal, 10, 1-7(2018).

    [104] Mittal V, Nedeljkovic M, Carpenter L G et al. Waveguide absorption spectroscopy of bovine serum albumin in the mid-infrared fingerprint region[J]. ACS Sensors, 4, 1749-1753(2019).

    [105] Mittal V, Devitt G, Nedeljkovic M et al. Ge on Si waveguide mid-infrared absorption spectroscopy of proteins and their aggregates[J]. Biomedical Optics Express, 11, 4714-4722(2020).

    [106] Seo D, Gregory J M, Feldman L C et al. Multiphoton absorption in germanium using pulsed infrared free-electron laser radiation[J]. Physical Review B, 83, 195203(2011).

    [107] Nedeljkovic M, Soref R, Mashanovich G Z. Predictions of free-carrier electroabsorption and electrorefraction in germanium[J]. IEEE Photonics Journal, 7, 1-14(2015).

    [108] Sohn B U, Monmeyran C, Kimerling L C et al. Kerr nonlinearity and multi-photon absorption in germanium at mid-infrared wavelengths[J]. Applied Physics Letters, 111, 091902(2017).

    [109] de Leonardis F, Troia B, Soref R A et al. Germanium-on-silicon waveguide engineering for third harmonic generation in the mid-infrared[J]. Journal of Lightwave Technology, 33, 5103-5113(2015).

    [110] de Leonardis F, Troia B, Soref R A et al. Investigation of mid-infrared second harmonic generation in strained germanium waveguides[J]. Optics Express, 24, 11126-11144(2016).

    [112] de Leonardis F, Troia B, Soref R A et al. Theoretical demonstration of Brillouin lasing effect in racetrack resonators based on germanium waveguides in the mid-infrared[J]. Optics Letters, 41, 416-419(2016).

    [113] de Leonardis F, Troia B, Soref R A et al. Investigation of germanium Raman lasers for the mid-infrared[J]. Optics Express, 23, 17237-17254(2015).

    [114] Zhang B, Yang W Q, Hou J et al. All-fiber mid-infrared supercontinuum source from 1.9 μm to 4.3 μm[J]. Chinese Journal of Lasers, 40, 1102013(2013).

    [115] Jia Z X, Yao C F, Li Z R et al. Progress on novel high power mid-infrared fiber laser materials and supercontinuum laser[J]. Chinese Journal of Lasers, 46, 0508006(2019).

    [116] de Leonardis F, Troia B, Soref R A et al. Modelling of supercontinuum generation in the germanium-on-silicon waveguided platform[J]. Journal of Lightwave Technology, 33, 4437-4444(2015).

    [117] Yuan J H, Kang Z, Li F et al. Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide[J]. Journal of Lightwave Technology, 35, 2994-3002(2017).

    [118] Torre A D, Sinobad M, Armand R et al. Mid-infrared supercontinuum generation in a low-loss germanium-on-silicon waveguide[J]. APL Photonics, 6, 016102(2021).

    [119] Guo Y H, Wang J, Han Z H et al. Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator[J]. Nanophotonics, 7, 1461-1467(2018).

    [120] Liang T K, Tsang H K. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides[J]. Applied Physics Letters, 84, 2745-2747(2004).

    [121] Zhou W, Cheng Z Z, Chen X et al. Subwavelength engineering in silicon photonic devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-13(2019).

    [122] Zhou W, Cheng Z Z, Zhu B Q et al. Hyperuniform disordered network polarizers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 288-294(2016).

    [123] Molesky S, Lin Z, Piggott A Y et al. Inverse design in nanophotonics[J]. Nature Photonics, 12, 659-670(2018).

    [124] Cheng Z, Chen X, Wong C Y et al. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide[J]. Optics Letters, 37, 1217-1219(2012).

    [125] Cheng Z, Chen X, Wong C Y et al. Broadband focusing grating couplers for suspended-membrane waveguides[J]. Optics Letters, 37, 5181-5183(2012).

    [126] Fang Y R, Ge Y Q, Wang C et al. Mid-infrared photonics using 2D materials: status and challenges[J]. Laser & Photonics Reviews, 14, 1900098(2020).

    [127] Yang R Q. Infrared laser based on intersubband transitions in quantum wells[J]. Superlattices and Microstructures, 17, 77-83(1995).

    [128] Faist J, Capasso F, Sivco D L et al. Quantum cascade laser[J]. Science, 264, 553-556(1994).

    [129] Han S M, Chen W C, Hu H F et al. Characterization method of a mid-infrared graphene-on-silicon microring with a monochromatic laser[J]. Journal of the Optical Society of America B, 37, 1683-1688(2020).

    [130] Kasper E, Kittler M, Oehme M et al. Germanium tin: silicon photonics toward the mid-infrared[J]. Photonics Research, 1, 69-76(2013).

    Tools

    Get Citation

    Copy Citation Text

    Rongxiang Guo, Haoran Gao, Zhenzhou Cheng, Tiegen Liu. Advances on Mid-Infrared Germanium Integrated Photonics[J]. Chinese Journal of Lasers, 2021, 48(19): 1901002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jun. 15, 2021

    Accepted: Jul. 26, 2021

    Published Online: Sep. 14, 2021

    The Author Email: Cheng Zhenzhou (zhenzhoucheng@tju.edu.cn)

    DOI:10.3788/CJL202148.1901002

    Topics