Journal of Inorganic Materials, Volume. 40, Issue 6, 719(2025)
[1] WU J G, HU Z Q, GAO X Y et al. Unconventional piezoelectric coefficients in perovskite piezoelectric ceramics[J]. J. Materiomics, 7, 254(2021).
[2] WEI H G, WANG H, XIA Y J et al. An overview of lead-free piezoelectric materials and devices[J]. J. Mater. Chem. C, 6, 12446(2018).
[3] DE U, SAHU K R, DE A. Ferroelectric materials for high temperature piezoelectric applications[J]. Solid State Phenom, 232:, 235(2015).
[5] ZHANG S J, YU F P. Piezoelectric materials for high temperature sensors[J]. J. Am. Ceram. Soc, 94, 3153(2011).
[6] XI J W, CHEN H, TAN Z et al. Origin of high piezoelectricity in CBT-based Aurivillius ferroelectrics: glide of (Bi2O2)2+ blocks and suppressed internal bias field[J]. Acta Mater, 237, 118146(2022).
[7] XIE X C, ZHOU Z Y, WANG T Z et al. High temperature impedance properties and conduction mechanism of W6+-doped CaBi4Ti4O15 Aurivillius piezoceramics[J]. J. Appl. Phys, 124, 204101(2018).
[8] LIU Y, ZHANG Y H, ZHU L L et al. Enhanced piezoelectric activity with good thermal stability and improved electrical resistivity in Ta-Mn co-doped CaBi4Ti4O15 high-temperature piezoceramics[J]. Ceram. Int, 46, 22532(2020).
[9] XI J W, CHEN H, PENG X et al. Achieving significantly enhanced piezoelectricity in Aurivillius ceramics by improving initial polarization and dielectric breakdown strength[J]. J. Eur. Ceram. Soc, 43, 4757(2023).
[10] ZHAO L, LI G H, ZHAI X et al. Enhanced electrical performance in CaBi4Ti4O15 ceramics through synergistic chemical doping and texture engineering[J]. J. Materiomics, 10, 471(2024).
[11] CHEN H, XI J W, TAN Z et al. Decoding intrinsic and extrinsic contributions for high piezoelectricity of CBT-based piezoelectric ceramics[J]. J. Mater. Chem. C, 11, 12048(2023).
[12] DAMJANOVIC D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics[J]. J. Am. Ceram. Soc, 88, 2663(2005).
[13] LI Y G, ZHOU Z Y, LIANG R H et al. A simple Bi3+ self-doping strategy constructing pseudo-tetragonal phase boundary to enhance electrical properties in CaBi2Nb2O9 high-temperature piezoceramics[J]. J. Eur. Ceram. Soc, 42, 2772(2022).
[14] ZHANG Y H, HUANG P M, ZHU L L et al. Doping level effects in Nb self-doped Bi3TiNbO9 high-temperature piezoceramics with improved electrical properties[J]. Int. J. Appl. Ceram. Tec, 17, 2407(2020).
[15] CAO W J, LIN R J, HOU X et al. Interfacial polarization restriction for ultrahigh energy-storage density in lead-free ceramics[J]. Adv. Funct. Mater, 33, 2301027(2023).
[16] DUAN C G, MEI W N, YIN W G et al. Simulations of ferroelectric polymer film polarization: the role of dipole interactions[J]. Phys. Rev. B, 69:, 235106(2004).
[17] PRODROMAKIS T, PAPAVASSILIOU C. Engineering the Maxwell- Wagner polarization effect[J]. Appl. Surf. Sci, 255, 6989(2009).
[18] TURIK A V, CHERNOBABOV A I, RADCHENKO G S et al. Giant piezoelectric and dielectric enhancement in disordered heterogeneous systems[J]. Phys. Solid State, 46, 2213(2004).
[19] TIAN G, DENG W L, YANG T et al. Insight into interfacial polarization for enhancing piezoelectricity in ferroelectric nanocomposites[J]. Small, 19, 2207947(2023).
[20] XIE J, ZHONG J Q, WU C et al. Enhanced electrical properties related to structural distortion of CaBi2Nb2O9-based piezoelectric ceramics[J]. J. Am. Ceram. Soc, 102, 1287(2019).
[21] ZOU W, WANG J L, CHEN Z Z et al. Anisotropic electrical and magnetic properties in grain-oriented Bi4Ti3O12-La0.5Sr0.5MnO3[J]. J. Mater. Chem. C, 6, 11272(2018).
[22] ZHUK N A, LUTOEV V P, MAKEEV B A et al. Magnetic susceptibility, EPR, NEXAFS and XPS spectra of Fe-doped CaBi2Nb2O9[J]. J. Mater. Res. Technol, 9, 4173(2020).
[23] HUSSAIN A, JABEEN N, HASSAN N U et al. Influence of Mn ions' insertion in pseudo-tetragonal phased CaBi4Ti4O15-based ceramics for highly efficient energy storage devices and high- temperature piezoelectric applications[J]. Int. J. Mol. Sci, 23, 12723(2022).
[24] YAO Y Y, SONG C H, BAO P et al. Doping effect on the dielectric property in bismuth titanate[J]. J. Appl. Phys, 95, 3126(2004).
[25] SUÁREZ D Y, REANEY I M, LEE W E. Relation between tolerance factor and
[26] CAI K, HUANG C C, GUO D. Significantly enhanced piezoelectricity in low-temperature sintered Aurivillius-type ceramics with ultrahigh Curie temperature of 800 ℃[J]. J. Phys. D, 50, 111287(2017).
[27] SUBBARAO E C, MCQUARRIE M C, BUESSEM W R. Domain effects in polycrystalline barium titanate[J]. J. Appl. Phys, 28, 1194(1957).
[28] GLAZOUNOV A E, HOFFMANN M J. Investigation of domain switching in fractured ferroelectric ceramics by using imaging of X-ray diffraction[J]. J. Eur. Ceram. Soc, 21, 1417(2001).
[29] XIE X C, ZHOU Z Y, GAO B T et al. Ion-pair engineering- induced high piezoelectricity in Bi4Ti3O12-based high-temperature piezoceramics[J]. ACS Appl. Mater. Interfaces, 14, 14321(2022).
[30] ZHANG Y Y, KE X C, ZHAO K Y et al. Ca2+ doping effects on the structural and electrical properties of Na0.5Bi4.5Ti4O15 piezoceramics[J]. Ceram. Int, 48, 31265(2022).
[31] NIE R, YUAN J, LI W et al. Microstructure and electric property of (1-
[32] LI L L, YUAN H B, HUANG P M et al. Enhanced piezoelectricity and excellent thermal stabilities in Nb-Mg co-doped CaBi4Ti4O15 Aurivillius high Curie temperature ceramics[J]. Ceram. Int, 46, 2178(2020).
[33] XIE X C, ZHOU Z Y, LIANG R H et al. Superior piezoelectricity in bismuth titanate-based lead-free high-temperature piezoceramics
[34] ZHANG Y Y, LIANG R H, ZHOU Z Y. Enhanced electrical properties of Cr2O3 addition NBT-based high-temperature piezoelectric ceramics[J]. J. Am. Ceram. Soc, 106, 2357(2023).
Get Citation
Copy Citation Text
Yangyang ZHOU, Yanyan ZHANG, Ziyi YU, Zhengqian FU, Fangfang XU, Ruihong LIANG, Zhiyong ZHOU.
Category:
Received: Dec. 26, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Zhiyong ZHOU (zyzhou@mail.sic.ac.cn)