Laser & Optoelectronics Progress, Volume. 56, Issue 6, 060001(2019)

Hole Injection Efficiency Improvement for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes

Kangkai Tian1,2, Chunshuang Chu1,2, Wengang Bi1,2, Yonghui Zhang1,2、**, and Zihui Zhang1,2、*
Author Affiliations
  • 1 Institute of Micro-Nano Photoelectron and Electromagnetic Technology Innovation, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
  • 2 Key Laboratory of Electronic Materials and Devices of Tianjin, Tianjin 300401, China
  • show less
    References(83)

    [21] Sharma T K, Naveh D, Towe E. Strain-driven light-polarization switching in deep ultraviolet nitride emitters[J]. Physical Review B, 84, 035305(2011).

    [35] Park J S, Kim J K, Cho J et al. Review: Group III-nitride-based ultraviolet light-emitting diodes: Ways of increasing external quantum efficiency[J]. ECS Journal of Solid State Science and Technology, 6, Q42-Q52(2017).

    [38] Piprek J. Efficiency droop in nitride-based light-emitting diodes[J]. Physica Status Solidi (a), 207, 2217-2225(2010).

    [39] Zhang Z H, Zhang Y H, Bi W G et al. On the internal quantum efficiency for InGaN/GaN light-emitting diodes grown on insulating substrates[J]. Physica Status Solidi (a), 213, 3078-3102(2016).

    [40] Schubert E F[M]. Light Emitting Diodes(2006).

    [41] Miller D A B, Chemla D S, Damen T C et al. . Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect[J]. Physical Review Letters, 53, 2173(1984).

    [42] Schwarz U T, Braun H, Kojima K et al. Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells[J]. Applied Physics Letters, 91, 123503(2007).

    [43] Chichibu S F, Yamaguchi H, Zhao L et al. Improved characteristics and issues of m-plane InGaN films grown on low defect density m-plane freestanding GaN substrates by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 93, 151908(2008).

    [44] Masui H, Nakamura S, Denbaars S P et al. Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges[J]. IEEE Transactions on Electron Devices, 57, 88-100(2010).

    [45] Kim D S, Lee S, Young Kim D et al. Highly stable blue-emission in semipolar (11-22) InGaN/GaN multi-quantum well light-emitting diode[J]. Applied Physics Letters, 103, 021111(2013).

    [46] Chang J Y, Kuo Y K. Influence of polarization-matched AlGaInN barriers in blue InGaN light-emitting diodes[J]. Optics Letters, 37, 1574-1576(2012).

    [47] Ryou J H, Limb J, Lee W et al. Effect of silicon doping in the quantum-well barriers on the electrical and optical properties of visible green light-emitting diodes[J]. IEEE Photonics Technology Letters, 20, 1769-1771(2008).

    [48] Fiorentini V, Bernardini F, Della Sala F et al. Effects of macroscopic polarization in III-V nitride multiple quantum wells[J]. Physical Review B, 60, 8849(1999).

    [49] Zhang Z H, Tan S T, Ju Z G et al. On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes[J]. Journal of Display Technology, 9, 226-233(2013).

    [50] Zhang Z H, Liu W, Ju Z G et al. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers[J]. Applied Physics Letters, 104, 243501(2014).

    [51] Cho J, Schubert E F, Kim J K. Efficiency droop in light-emitting diodes: Challenges and countermeasures[J]. Laser & Photonics Reviews, 7, 408-421(2013).

    [52] Katsuragawa M, Sota S, Komori M et al. 189-[J]. Mg in AlGaN. Journal of Crystal Growth, 190, 528-531(1998).

    [53] Simon J, Protasenko V, Lian C et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures[J]. Science, 327, 60-64(2010).

    [54] Schubert E F, Grieshaber W, Goepfert I D. Enhancement of deep acceptor activation in semiconductors by superlattice doping[J]. Applied Physics Letters, 69, 3737-3739(1996).

    [55] Kumakura K, Makimoto T, Kobayashi N. Efficient hole generation above 10 19 cm -3 in Mg-doped InGaN/GaN superlattices at room temperature [J]. Japanese Journal of Applied Physics, 39, L195-L196(2000).

    [56] Jo M, Maeda N, Hirayama H. Enhanced light extraction in 260 nm light-emitting diode with a highly transparent p-AlGaN layer[J]. Applied Physics Express, 9, 012102(2016).

    [57] Li L P, Shi Q, Tian K K et al. A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes[J]. Physica Status Solidi (a), 214, 1600937(2017).

    [58] Zhang Z H, Li L P, Zhang Y H et al. On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes[J]. Optics Express, 25, 16550-16559(2017).

    [59] Zhang Z H. Huang Chen S W, Zhang Y H, et al. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes[J]. ACS Photonics, 4, 1846-1850(2017).

    [60] Neugebauer S, Hoffmann M P, Witte H et al. All metalorganic chemical vapor phase epitaxy of p/n-GaN tunnel junction for blue light emitting diode applications[J]. Applied Physics Letters, 110, 102104(2017).

    [61] Jeon S R, Song Y H, Jang H J et al. Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions[J]. Applied Physics Letters, 78, 3265-3267(2001).

    [62] Krishnamoorthy S, Nath D N, Akyol F et al. Polarization-engineered GaN/InGaN/GaN tunnel diodes[J]. Applied Physics Letters, 97, 203502(2010).

    [63] Zhang Z H, Tiam Tan S, Kyaw Z et al. InGaN/GaN light-emitting diode with a polarization tunnel junction[J]. Applied Physics Letters, 102, 193508(2013).

    [64] Krishnamoorthy S, Akyol F, Rajan S. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes[J]. Applied Physics Letters, 105, 141104(2014).

    [65] Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures[J]. Applied Physics Letters, 80, 1204-1206(2002).

    [66] Li L P, Zhang Y H, Tian K K et al. Numerical investigations on the n +-GaN/AlGaN/p +-GaN tunnel junction for III-nitride UV light-emitting diodes [J]. Physica Status Solidi (a), 214, 1700624(2017).

    [67] Zhang Z H, Tan S T, Liu W et al. Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer[J]. Optics Express, 21, 4958-4969(2013).

    [68] Zhu H T, Fu R L, Fei M et al. Optical and thermal performance of LED light source packaged by Al/Al2O3 composite substrate[J]. Acta Optica Sinica, 37, 1023002(2017).

    [69] Kuo Y K, Chang J Y, Chen F M et al. Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes[J]. IEEE Journal of Quantum Electronics, 52, 3300105(2016).

    [70] Zhang Z H, Liu W, Tan S T et al. A hole accelerator for InGaN/GaN light-emitting diodes[J]. Applied Physics Letters, 105, 153503(2014).

    [71] Zhang Z H, Zhang Y H, Bi W G et al. On the hole accelerator for III-nitride light-emitting diodes[J]. Applied Physics Letters, 108, 151105(2016).

    [72] Yun Y Z, Yi A Y. Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer[J]. Applied Physics Letters, 99, 221103(2011).

    [73] Li Y, Chen S C, Tian W et al. Advantages of AlGaN-based 310-nm UV light-emitting diodes with al content graded AlGaN electron blocking layers[J]. IEEE Photonics Journal, 5, 8200309(2013).

    [74] Zhang Z H. Huang Chen S W, Chu C S, et al. Nearly efficiency-droop-free AlGaN-based ultraviolet light-emitting diodes with a specifically designed superlattice p-type electron blocking layer for high mg doping efficiency[J]. Nanoscale Research Letters, 13, 122(2018).

    [75] Su C Y, Tu C G, Liu W H et al. Enhancing the hole-injection efficiency of a light-emitting diode by increasing mg doping in the p-AlGaN electron-blocking layer[J]. IEEE Transactions on Electron Devices, 64, 3226-3233(2017).

    [76] Zhang Z H, Ju Z G, Liu W et al. Improving hole injection efficiency by manipulating the hole transport mechanism through p-type electron blocking layer engineering[J]. Optics Letters, 39, 2483-2486(2014).

    [77] Chu C S, Tian K K, Fang M Q et al. Structural design and optimization of deep-ultraviolet light-emitting diodes with AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y) p-electron blocking layer[J]. Journal of Nanophotonics, 12, 043503(2018).

    [78] Chu C S, Tian K K, Fang M Q et al. On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN(x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes[J]. Superlattices and Microstures, 113, 472-477(2018).

    [79] Tian K K, Chu C S, Shao H et al. On the polarization effect of the p-EBL/p-AlGaN/p-GaN structure for AlGaN-based deep-ultraviolet light-emitting diodes[J]. Superlattices and Microstructures, 122, 280-285(2018).

    [80] Meyaard D S, Lin G B, Ma M et al. GaInN light-emitting diodes using separate epitaxial growth for the p-type region to attain polarization-inverted electron-blocking layer, reduced electron leakage, and improved hole injection[J]. Applied Physics Letters, 103, 201112(2013).

    [81] Kim S J, Kim T G. Deep-ultraviolet AlGaN light-emitting diodes with variable quantum well and barrier widths[J]. Physica Status Solidi (a), 211, 656-660(2014).

    [82] Tsai M C, Yen S H, Kuo Y K. Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers[J]. Applied Physics Letters, 98, 111114(2011).

    [83] Zhang Z H, Chu C S, Chiu C H et al. UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections[J]. Optics Letters, 42, 4533-4536(2017).

    Tools

    Get Citation

    Copy Citation Text

    Kangkai Tian, Chunshuang Chu, Wengang Bi, Yonghui Zhang, Zihui Zhang. Hole Injection Efficiency Improvement for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 11, 2018

    Accepted: Nov. 13, 2018

    Published Online: Jul. 30, 2019

    The Author Email: Zhang Yonghui (zhangyh@hebut.edu.cn), Zhang Zihui (zh.zhang@hebut.edu.cn)

    DOI:10.3788/LOP56.060001

    Topics