In a few-mode erbium-doped fiber (FM-EDF), which is a key section in a space-division multiplexing (SDM) communication system, linearly polarized (LP) and orbital angular momentum (OAM) modes, as two-mode bases with different phase profiles, can be transformed into each other. In principle, the LP and OAM modes have a different mode spatial intensity distribution and a gain difference for FM-EDF amplifiers. How to analyze and characterize the differential mode-bases gain (DMBG) is important, but still an issue. We build, for the first time to our knowledge, a local analysis model composed of discrete elements of the FM-EDF cross section in areas of mode spatial intensity distribution azimuthal variation. Using the model of the two mode bases, analysis of local particle number distribution and detailed description of the local gain difference are realized, and the overall gain difference between the two mode bases is obtained. By building an amplifier system based on mode phase profile controlling, the gain of two mode bases is characterized experimentally. The measured DMBG is ∼0.8 dB in the second-order mode, which is consistent with the simulation result. This result provides a potential way to reduce the mode gain difference in the FM-EDF, which is important in improving the performance of the SDM communication system.