Frontiers of Optoelectronics, Volume. 15, Issue 3, 12200(2022)
Ghost edge detection based on HED network
[1] [1] Padgett, M.J., Boyd, R.W.: An introduction to ghost imaging: quantum and classical. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 375(2099), 20160233 (2017)
[2] [2] Shapiro, J.H., Boyd, R.W.: The physics of ghost imaging. Quant. Inform. Process. 11(4), 949–993 (2012)
[3] [3] Pittman, T.B., Shih, Y.H., Strekalov, D.V., Sergienko, A.V.: Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52(5), R3429–R3432 (1995)
[4] [4] Bennink, R.S., Bentley, S.J., Boyd, R.W.: “Two-Photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89(11), 113601 (2002)
[5] [5] Valencia, A., Scarcelli, G., D’Angelo, M., Shih, Y.: Two-photon imaging with thermal light. Phys Rev Lett. 94(6), 063601 (2005)
[6] [6] Liu, X.F., Chen, X.H., Yao, X.R., Yu, W.K., Zhai, G.J., Wu, L.A.: Lensless ghost imaging with sunlight. Opt. Lett. 39(8), 2314–2317 (2014)
[7] [7] Shapiro, J.H.: Computational ghost imaging. Phys. Rev. A 78(6), 061802 (2008)
[8] [8] Deng, C., Gong, W., Han, S.: Pulse-compression ghost imaging lidar via coherent detection. Opt. Express 24(23), 25983–25994 (2016)
[9] [9] Radwell, N., Mitchell, K.J., Gibson, G.M., Edgar, M.P., Bowman, R., Padgett, M.J.: Single-pixel infrared and visible microscope. Optica 1(5), 285–289 (2014)
[10] [10] Wang, L., Zhao, S., Cheng, W., Gong, L., Chen, H.: Optical image hiding based on computational ghost imaging. Opt. Commun. 366, 314–320 (2016)
[11] [11] Clemente, P., Durán, V., Torres-Company, V., Tajahuerce, E., Lancis, J.: Optical encryption based on computational ghost imaging. Opt. Lett. 35(14), 2391–2393 (2010)
[12] [12] Zhao, S., Wang, L., Liang, W., Cheng, W., Gong, L.: High performance optical encryption based on computational ghost imaging with qr code and compressive sensing technique. Opt. Commun. 353, 90–95 (2015)
[13] [13] Gong, W.: High-resolution pseudo-inverse ghost imaging. Photon. Res. 3(5), 234–237 (2015)
[14] [14] Wang, L., Zhao, S.: Fast reconstructed and high-quality ghost imaging with fast walsh–hadamard transform. Photon. Res. 4(6), 240–244 (2016)
[15] [15] Yin, M.Q., Wang, L., Zhao, S.M.: Experimental demonstration of influence of underwater turbulence on ghost imaging. Chin. Phys. B 28(9), 094201 (2019)
[16] [16] Wang, L., Zhao, S.: Multiple-input single-output ghost imaging. IEEE Photon. J. 12(3), 1–13 (2020)
[17] [17] Liu, X.F., Yao, X.R., Lan, R.M., Wang, C., Zhai, G.J.: Edge detection based on gradient ghost imaging. Opt. Express 23(26), 33802–33811 (2015)
[18] [18] Mao, T., Chen, Q., He, W., Zou, Y., Dai, H., Gu, G.: Speckleshifting ghost imaging. IEEE Photon. J. 8(4), 1–10 (2016)
[19] [19] Wang, L., Zou, L., Zhao, S.: Edge detection based on subpixelspeckle shifting ghost imaging. Opt. Commun. 407, 181–185 (2018)
[20] [20] Yuan, S., Xiang, D., Liu, X., Zhou, X., Bing, P.: Edge detection based on computational ghost imaging with structured illuminations. Opt. Commun. 410, 350–355 (2018)
[21] [21] Ren, H., Zhao, S., Gruska, J.: Edge detection based on single-pixel imaging. Opt. Express 26(5), 5501–5511 (2018)
[22] [22] Ren, H.D., Wang, L., Zhao, S.M.: Efficient edge detection based on ghost imaging. OSA Continuum 2(1), 64–73 (2019)
[23] [23] Guo, H., He, R., Wei, C., Lin, Z., Wang, L., Zhao, S.: Compressed ghost edge imaging. Chin. Opt. Lett. 17(7), 071101 (2019)
[24] [24] Chen, Y., Li, X., Cheng, Z., Cheng, Y., Zhai, X.: Multidirectional edge detection based on gradient ghost imaging. Optik (Stuttg.) 207, 163768 (2020)
[25] [25] Lyu, M., Wang, W., Wang, H., Wang, H., Li, G., Chen, N., Situ, G.: Deep-learning-based ghost imaging. Sci. Rep. 7(1), 17865 (2017)
[26] [26] Jiao, S., Gao, Y., Feng, J., Lei, T., Yuan, X.: Does deep learning always outperform simple linear regression in optical imaging? Opt. Express 28(3), 3717–3731 (2020)
[27] [27] Wang, F., Wang, H., Wang, H., Li, G., Situ, G.: Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. Opt. Express 27(18), 25560–25572 (2019)
[28] [28] Ni, Y., Zhou, D., Yuan, S., Bai, X., Xu, Z., Chen, J., Li, C., Zhou, X.: Color computational ghost imaging based on a generative adversarial network. Opt. Lett. 46(8), 1840–1843 (2021)
[29] [29] Zhang, H., Duan, D.: Computational ghost imaging with compressed sensing based on a convolutional neural network. Chin. Opt. Lett. 19(10), 101101 (2021)
[30] [30] Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
[31] [31] Li, C., Yin, W., Zhang, Y.: User’s guide for tval3: Tv minimization by augmented lagrangian and alternating direction algorithms. CAAM Rep 20(46–47), 4 (2009)
[32] [32] Li, C., Yin, W., Jiang, H., Zhang, Y.: An efficient augmented lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 56(3), 507–530 (2013)
[33] [33] Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision. pp. 1395–1403 (2015)
[34] [34] Xu, Z., Luo, H., Hui, B., Chang, Z.: Contour detection using an improved holistically-nested edge detection network. In: Global Intelligence Industry Conference (GIIC 2018), vol. 10835. International Society for Optics and Photonics, p. 1083503 (2018)
[35] [35] Lou, L., Zang, S.: Research on edge detection method based on improved HED network. J. Phys. Conf. Ser. 1607(1), 012068 (2020)
Get Citation
Copy Citation Text
Shengmei Zhao, Yifang Cui, Xing He, Le Wang. Ghost edge detection based on HED network[J]. Frontiers of Optoelectronics, 2022, 15(3): 12200
Category: RESEARCH ARTICLE
Received: Mar. 7, 2022
Accepted: May. 15, 2022
Published Online: Jan. 21, 2023
The Author Email: Shengmei Zhao (zhaosm@njupt.edu.cn)