The Journal of Light Scattering, Volume. 37, Issue 2, 188(2025)
Strain Engineering of Raman Modes in 2D Transition Metal Dichalcogenides
[1] [1] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226.
[2] [2] Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides[J]. Chemical Society Reviews, 2015, 44(9): 2702-2712.
[3] [3] Choi W, Choudhary N, Han G H, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications[J]. Materials Today, 2017, 20(3): 116-130.
[4] [4] Philip A, Kumar A R. Recent advancements and developments employing 2D-materials in enhancing the performance of electrochemical supercapacitors: a review[J]. Renewable and Sustainable Energy Reviews, 2023, 182: 113423.
[5] [5] Dai Z H, Liu L Q, Zhang Z. Strain engineering of 2D materials: issues and opportunities at the interface[J]. Advanced Materials, 2019, 31(45): 1805417.
[6] [6] Yang S X, Chen Y J, Jiang C H. Strain engineering of two - dimensional materials: Methods, properties, and applications[J]. InfoMat, 2021, 3(4): 397-420.
[7] [7] Yu X X, Peng Z R, Xu L L, et al. Manipulating 2D materials through strain engineering[J]. Small, 2024, 20(38): 2402561.
[8] [8] Lloyd D, Liu X H, Christopher J W, et al. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2[J]. Nano Letters, 2016, 16(9): 5836-5841.
[9] [9] Datye I M, Daus A, Grady R W, et al. Strain-enhanced mobility of monolayer MoS2[J]. Nano Letters, 2022, 22(20): 8052-8059.
[10] [10] Cai W F, Wang J Y, He Y M, et al. Strain-modulated photoelectric responses from a flexible -In2Se3/3R MoS2heterojunction[J]. Nano-Micro Letters, 2021, 13(1): 74.
[11] [11] Shin B G, Han G H, Yun S J, et al. Indirect bandgap puddles in monolayer MoS2 by substrate-induced local strain[J]. Advanced Materials, 2016, 28(42): 9378-9384.
[12] [12] Patricia G, Huang P, David P, et al. A strain tunable single-layer MoS2photodetector[J]. Material Today, 2019, 27: 8-13.
[13] [13] Jung Y S, Park J W, Kim J Y, et al. Ultrahigh photoresponse in strain-and domain-engineered large-scale MoS2 monolayer films[J]. Journal of Materials Chemistry A, 2023, 11(32): 17101-17111.
[14] [14] Iris N, Robert S, Matthias D, et al. Strain control of exciton-phonon coupling in atomically thin semiconductors[J]. Nano Letters, 2018, 18(3): 1751-1757.
[15] [15] Li H, Carrascoso F, Borrs A, et al. Towards efficient strain engineering of 2D materials: A four-points bending approach for compressive strain[J]. Nano Research, 2024, 17(6): 5317-5325.
[16] [16] Yang R, Lee J, Ghosh S, et al. Tuning optical signatures of single-and few-layer MoS2 by blown-bubble bulge straining up to fracture[J]. Nano Letters, 2017, 17(8): 4568-4575.
[17] [17] Li Z W, Lv Y W, Ren L W, et al. Efficient strain modulation of 2D materials via polymer encapsulation[J]. Nature Communications, 2020, 11(1): 1151.
[18] [18] Wang G R, Dai Z H, Wang Y L, et al. Measuring interlayer shear stress in bilayer graphene[J]. Physical Review Letters, 2017, 119(3): 036101.
[19] [19] Cui X W, Liu L Q, Dong W L, et al. Mechanics of 2D material bubbles[J]. Nano Research, 2023, 16(12): 13434-13449.
[20] [20] Dai Z H, Hou Y, Sanchez D A, et al. Interface-governed deformation of nanobubbles and nanotents formed by two-dimensional materials[J]. Physical Review Letters, 2018, 121(26): 266101.
[21] [21] Cui X W, Dong W L, Feng S Z, et al. Extra - high mechanical and phononic anisotropy in black phosphorus blisters[J]. Small, 2023, 19(45): 2301959.
[24] [24] Cong X, Liu X L, Lin M L, et al. Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials[J]. npj 2D Materials and Applications, 2020, 4(1): 981-1013.
[25] [25] Wang G R, Dai Z H, Xiao J K, et al. Bending of multilayer van der Waals materials[J]. Physical Review Letters, 2019, 123(11): 116101.
[26] [26] Cooper R C, Lee C, Marianetti C A, et al. Nonlinear elastic behavior of two-dimensional molybdenum disulfide[J]. Physical Review B—Condensed Matter and Materials Physics, 2013, 87(3): 035423.
[27] [27] Brugger K. Generalized Grneisen parameters in the anisotropic Debye model[J]. Physical Review, 1965, 137(6A): A1826.
[28] [28] Mohiuddin T M G, Lombardo A, Nair R R, et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grneisen parameters, and sample orientation[J]. Physical Review B—Condensed Matter and Materials Physics, 2009, 79(20): 205433.
[29] [29] Castellanos-Gomez A, Roldn R, Cappelluti E, et al. Local strain engineering in atomically thin MoS2[J]. Nano Letters, 2013, 13(11): 5361-5366.
[30] [30] Conley H J, Wang B, Ziegler J I, et al., Bandgap engineering of strained monolayer and bilayer MoS2[J]. Nano Letters, 2013, 13(8): 3626-3630.
[31] [31] Wang Y L, Cong C X, Qiu C Y, et al. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain[J]. Small, 2013, 9(17): 2857-2861.
[32] [32] Wang G R, Liu L Q, Zhang Z. Interface mechanics in carbon nanomaterials-based nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106212.
[33] [33] Wang G R, Gao E L, Dai Z H, et al. Degradation and recovery of graphene/polymer interfaces under cyclic mechanical loading[J]. Composites Science and Technology, 2017, 149: 220-227.
[34] [34] Dai Z H, Wang G R, Liu L Q, et al. Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces[J]. Composites Science and Technology, 2016, 136: 1-9.
[35] [35] Wang G R, Dai Z H, Liu L Q, et al. Tuning the interfacial mechanical behaviors of monolayer graphene/PMMA nanocomposites[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22554-22562.
[36] [36] Cui Y Y, Wang G R, Wang W X, et al. Trade-off between interface stiffening and Young's modulus weakening in graphene/PMMA nanocomposites[J]. Composites Science and Technology, 2022, 225: 109483.
[37] [37] Wang Y P, Huang S, Zhao H, et al. First principles study on properties of monolayer MoS2 under different strains[J]. Brazilian Journal of Physics, 2021, 51(4): 1230-1236.
Get Citation
Copy Citation Text
ZHANG Qiongyu, CUI Xuwei, DONG Wenlong, JARAPANYACHEEP Rapisa, LIU Luqi. Strain Engineering of Raman Modes in 2D Transition Metal Dichalcogenides[J]. The Journal of Light Scattering, 2025, 37(2): 188
Category:
Received: Oct. 14, 2024
Accepted: Jul. 31, 2025
Published Online: Jul. 31, 2025
The Author Email: LIU Luqi (liulq@nanoctr.cn)