The Journal of Light Scattering, Volume. 37, Issue 2, 188(2025)

Strain Engineering of Raman Modes in 2D Transition Metal Dichalcogenides

ZHANG Qiongyu1,2, CUI Xuwei1, DONG Wenlong1,2, JARAPANYACHEEP Rapisa1,2, and LIU Luqi1、*
Author Affiliations
  • 1CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
  • 2University of Chinese Academy of Science, Beijing 100049, China
  • show less
    References(35)

    [1] [1] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226.

    [2] [2] Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides[J]. Chemical Society Reviews, 2015, 44(9): 2702-2712.

    [3] [3] Choi W, Choudhary N, Han G H, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications[J]. Materials Today, 2017, 20(3): 116-130.

    [4] [4] Philip A, Kumar A R. Recent advancements and developments employing 2D-materials in enhancing the performance of electrochemical supercapacitors: a review[J]. Renewable and Sustainable Energy Reviews, 2023, 182: 113423.

    [5] [5] Dai Z H, Liu L Q, Zhang Z. Strain engineering of 2D materials: issues and opportunities at the interface[J]. Advanced Materials, 2019, 31(45): 1805417.

    [6] [6] Yang S X, Chen Y J, Jiang C H. Strain engineering of two - dimensional materials: Methods, properties, and applications[J]. InfoMat, 2021, 3(4): 397-420.

    [7] [7] Yu X X, Peng Z R, Xu L L, et al. Manipulating 2D materials through strain engineering[J]. Small, 2024, 20(38): 2402561.

    [8] [8] Lloyd D, Liu X H, Christopher J W, et al. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2[J]. Nano Letters, 2016, 16(9): 5836-5841.

    [9] [9] Datye I M, Daus A, Grady R W, et al. Strain-enhanced mobility of monolayer MoS2[J]. Nano Letters, 2022, 22(20): 8052-8059.

    [10] [10] Cai W F, Wang J Y, He Y M, et al. Strain-modulated photoelectric responses from a flexible -In2Se3/3R MoS2heterojunction[J]. Nano-Micro Letters, 2021, 13(1): 74.

    [11] [11] Shin B G, Han G H, Yun S J, et al. Indirect bandgap puddles in monolayer MoS2 by substrate-induced local strain[J]. Advanced Materials, 2016, 28(42): 9378-9384.

    [12] [12] Patricia G, Huang P, David P, et al. A strain tunable single-layer MoS2photodetector[J]. Material Today, 2019, 27: 8-13.

    [13] [13] Jung Y S, Park J W, Kim J Y, et al. Ultrahigh photoresponse in strain-and domain-engineered large-scale MoS2 monolayer films[J]. Journal of Materials Chemistry A, 2023, 11(32): 17101-17111.

    [14] [14] Iris N, Robert S, Matthias D, et al. Strain control of exciton-phonon coupling in atomically thin semiconductors[J]. Nano Letters, 2018, 18(3): 1751-1757.

    [15] [15] Li H, Carrascoso F, Borrs A, et al. Towards efficient strain engineering of 2D materials: A four-points bending approach for compressive strain[J]. Nano Research, 2024, 17(6): 5317-5325.

    [16] [16] Yang R, Lee J, Ghosh S, et al. Tuning optical signatures of single-and few-layer MoS2 by blown-bubble bulge straining up to fracture[J]. Nano Letters, 2017, 17(8): 4568-4575.

    [17] [17] Li Z W, Lv Y W, Ren L W, et al. Efficient strain modulation of 2D materials via polymer encapsulation[J]. Nature Communications, 2020, 11(1): 1151.

    [18] [18] Wang G R, Dai Z H, Wang Y L, et al. Measuring interlayer shear stress in bilayer graphene[J]. Physical Review Letters, 2017, 119(3): 036101.

    [19] [19] Cui X W, Liu L Q, Dong W L, et al. Mechanics of 2D material bubbles[J]. Nano Research, 2023, 16(12): 13434-13449.

    [20] [20] Dai Z H, Hou Y, Sanchez D A, et al. Interface-governed deformation of nanobubbles and nanotents formed by two-dimensional materials[J]. Physical Review Letters, 2018, 121(26): 266101.

    [21] [21] Cui X W, Dong W L, Feng S Z, et al. Extra - high mechanical and phononic anisotropy in black phosphorus blisters[J]. Small, 2023, 19(45): 2301959.

    [24] [24] Cong X, Liu X L, Lin M L, et al. Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials[J]. npj 2D Materials and Applications, 2020, 4(1): 981-1013.

    [25] [25] Wang G R, Dai Z H, Xiao J K, et al. Bending of multilayer van der Waals materials[J]. Physical Review Letters, 2019, 123(11): 116101.

    [26] [26] Cooper R C, Lee C, Marianetti C A, et al. Nonlinear elastic behavior of two-dimensional molybdenum disulfide[J]. Physical Review B—Condensed Matter and Materials Physics, 2013, 87(3): 035423.

    [27] [27] Brugger K. Generalized Grneisen parameters in the anisotropic Debye model[J]. Physical Review, 1965, 137(6A): A1826.

    [28] [28] Mohiuddin T M G, Lombardo A, Nair R R, et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grneisen parameters, and sample orientation[J]. Physical Review B—Condensed Matter and Materials Physics, 2009, 79(20): 205433.

    [29] [29] Castellanos-Gomez A, Roldn R, Cappelluti E, et al. Local strain engineering in atomically thin MoS2[J]. Nano Letters, 2013, 13(11): 5361-5366.

    [30] [30] Conley H J, Wang B, Ziegler J I, et al., Bandgap engineering of strained monolayer and bilayer MoS2[J]. Nano Letters, 2013, 13(8): 3626-3630.

    [31] [31] Wang Y L, Cong C X, Qiu C Y, et al. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain[J]. Small, 2013, 9(17): 2857-2861.

    [32] [32] Wang G R, Liu L Q, Zhang Z. Interface mechanics in carbon nanomaterials-based nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106212.

    [33] [33] Wang G R, Gao E L, Dai Z H, et al. Degradation and recovery of graphene/polymer interfaces under cyclic mechanical loading[J]. Composites Science and Technology, 2017, 149: 220-227.

    [34] [34] Dai Z H, Wang G R, Liu L Q, et al. Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces[J]. Composites Science and Technology, 2016, 136: 1-9.

    [35] [35] Wang G R, Dai Z H, Liu L Q, et al. Tuning the interfacial mechanical behaviors of monolayer graphene/PMMA nanocomposites[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22554-22562.

    [36] [36] Cui Y Y, Wang G R, Wang W X, et al. Trade-off between interface stiffening and Young's modulus weakening in graphene/PMMA nanocomposites[J]. Composites Science and Technology, 2022, 225: 109483.

    [37] [37] Wang Y P, Huang S, Zhao H, et al. First principles study on properties of monolayer MoS2 under different strains[J]. Brazilian Journal of Physics, 2021, 51(4): 1230-1236.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Qiongyu, CUI Xuwei, DONG Wenlong, JARAPANYACHEEP Rapisa, LIU Luqi. Strain Engineering of Raman Modes in 2D Transition Metal Dichalcogenides[J]. The Journal of Light Scattering, 2025, 37(2): 188

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 14, 2024

    Accepted: Jul. 31, 2025

    Published Online: Jul. 31, 2025

    The Author Email: LIU Luqi (liulq@nanoctr.cn)

    DOI:10.13883/j.issn1004-5929.202502005

    Topics